xerclise 8
Autoencodaer

[2DL: Prof. Niessner

Data Augmentation at Beginning

* |mportance:

— Data augmentation is a solution towards limited training
data

— Also improve generalization ability of your model.

« Two types of data augmentation:
— Offline Augmentation
— Online Augmentation

[2DL: Prof. Niessner

Data Augmentation

« Offline Augmentation:

— AS a pre-processing step to increase the size of the
dataset. This is usually done when we have a small training
dataset. In this case, the size of the augmented dataset is
fixed.

« Online Augmentation:

— Apply transformations in mini-batches and then feed it to
the model So the size of the augmented dataset that the
model actually sees can be infinitely large.

[2DL: Prof. Niessner

Encoder

def _ init_ (self, hparams, input_size=28 * 28, latent_dim=20): ! '
euper () _init_() * Remark: Thisis a

set hyperparams

self.latent_dim = latent_dim ty p i Ca L Set u p fo r

self.input_size = input_size
self.hparams = hparams

self.encoder = None fu Lty_CO n n eCted

i

s e p layersYou can also

B

e i e be creative here

nn.Linear(input_size, 500),
nn.BatchNormld(500),

and come up with
nn.Dxl-opout(p=O <5),

n. Batehorld(100) YOour Own

nn.ReLU(),

- incar 160, Latens_din), architecture ©
nn.BatchNormld(latent_dim),

nn.ReLU()

class Encoder(nn.Module):

)

i
END OF YOUR CODE

B e e
[2DL: Prot. Niessner

Classifier

class Classifier(pl.LightningModule):

def _ init_(self, hparams, encoder, train_set=None, val_set=None, test_set=None): ® FQE?VYWEﬂrL(:|‘4€9rEE \X/E}

super().__init ()
set hyperparams ShO\X/ a \/ery Slmpte
self.hparams = hparams '
self.encoder = encoder Classrﬁer, but the
self.model = nn.Identity() , ,
self.data = {'train': train_set, important thmg to
'val': val_set, k} i k}
'test': test_set}
B o FW()tEE E?FEE |ES t Eat B/CDLJ
TODO: Initialize your classifier!
Remember that it must have the same inputsize as the outputsize # k]éﬂ\/é} tC) rYWEﬂt(:k] tk\e}
of your encoder # |
B i i |r]F)LJt ESF]E}F)GE C)f~tk1€9

classifier to the

self.model = nn.Linear (20, 10)

AR AR AR AAA AR AAAAAAAA A AAAAAAA AR A output s na pe of
END OF YOUR CODE
e T your enco der

implemented above,

[2DL: Prof. Niessner

Simple Encoder-Classifier Model

« Remark: With the given hyperparameters, our
Encoder-Classifier model can reach an accuracy
around 70%

HHHAHHHANHHHAN AR AN AR AN ARHHAAF AR A
TODO: Define your hyper parameters here!
i
hparams = {

"batch_size": 128,

"learning rate": le-2
}
i
END OF YOUR CODE
i

[2DL: Prof. Niessner

Autoencoder

o« Model Architecture:

— As suggested in the exercise notebook, the simplest way
s to have a symmetric architecture which ensure that
the latent information can be reconstructed properly.

e Reconstruction Loss:

— Inthis exercise, we use the mean squared error loss
petween our input pixels and the output pixels. Please
think what would be the potential drawbacks of this type

of loss. ©

[2DL: Prof. Niessner

Decoder

class Decoder (nn.Module):

def _ init_(self, hparams, latent dim=20, output size=28 * 28): ° Remark AS

super().__init_ ()

i o suggested
before, we will

self.decoder = None
s s B i
TODO: Initialize your decoder! # X -tkw
g | I |r—r(:)r— 659

self.decoder = nn.Sequential(a rC h itectu re O]C

nn.Linear(latent_dim, 100),
nn.BatchNormld(100),

g Seciiri o the encoder to

nn.ReLU(),
.Li (100, 500),

i construct the

nn.Dropout (p=0.5),

S decoder

nn.Linear (500, output_size)

)

i
END OF YOUR CODE
i

[2DL: Prof. Niessner

Autoencoder Training

B o i B i i e

TODO: Define your hyperparameters here! # .
B e e B e e ® Rel | la rl’< The
hparams = {

"batch size": 128,

" learnIng_rate" : 5e-3 hy p e r pa ra m ete r
} .
i###########################:ﬁﬁ#ﬁﬁ#ﬁﬁﬁﬁ#ﬁﬁﬁi###########################: a n d th e tra | n e r
i o h e r e | S Sl m | [a r t O

e s s !

TODO: Define your trainer! Don't forget the logger. # O u r p re\/ | O US

e s . .

ae_trainer = pl.Trainer(tra | n | n g Of th e
max_epochs=30,

gpus=1 if torch.cuda.is_available() else None, e n COd e r_ C La SS | ﬁ e r

logger=ae_logger

) model.

o
END OF YOUR CODE
o

[2DL: Prof. Niessner

Reconstruchon Analysis

\We can see that the reconstructed digits
look similar to the original ones, but they
are more blurry.

The reason of this are mainly two aspects:
— First, out latent dimension might be too small

" Original Digits so that we lost some useful information
.. — Second, the L2 reconstruction loss that we
use essentially converge to a mean value,

ﬂ.n which we would lose the sharpness.

Reconstructed Digits

Transfer Learning

« Now, we come to the most important part of this
exercise, which we take the pretrained encoder and
our classifier to build our final model, and trained on

only the labelled data

Untrained
Classifier

Pretrained Encoder

[2DL: Prof. Niessner

11

Transfer Learning

SR R R R R R R R B R R R e e R
TODO: Define your hyper parameters here!
B e
hparams = {

"batch_size": 256,

"learning rate": le-2
}
i
END OF YOUR CODE
B B e e /B A et L A B e e

i i
TODO: Define your trainer! Don't forget the logger.
i i

trainer = pl.Trainer(
max_epochs=50,
gpus=1 if torch.cuda.is_available() else None

)

i
END OF YOUR CODE
HHARBRAHHHHA AR RRRR AR A AR AAAR AR A A AAAA A

[2DL: Prof. Niessner

* Remarks: With
the example
nyperparameters
~Wwe can reach an
accuracy at
around 80%

12

Batch Normalization (Optional)

« Remarks: This is a computational graph of the forward
pass and the backward pass of the batch
normalization. It could help you better understand the

flow of computation

@—@—@ W
=

T
dz
2 (0
dy
] /
df
source:
https./kratzert github.io/2016/02/12/understanding-the-gradient-flow-th

rough-the-batch-normalization-layerhtml
|2DL: Prof. Niessner "

BatchNorm-forward

B
TODO: Look at the training-time forward pass implementation for batch#
normalization.

e Remarks: Note the
FHHHHHH AT

1 = np. (is=0) X
e e ot difference
Sqg = X _minus_mean ** 2 , ,
var = 1. / N * np.sum(sq, axis=0) k) t‘ t
sqrtvar = np.sqgrt(var + elzps)l e Ween ra' n | ng
ivar = 1. / sqgrtvar

X_norm = X _minus_mean * ivar p h aSe a n d testi n g

gammax = gamma * X norm

RS

out = gammax + beta

running var = momentum * running var + (1 - momentum) * var F)}ﬂ]éifsez}
running mean = momentum * running mean + (1 - momentum) * sample mean

cache = (out, x _norm, beta, gamma, X minus_mean, ivar, sqrtvar, var, eps

B i
END OF YOUR CODE
B
elif mode == 'test':

B i
TODO: Look at the test-time forward pass for batch normalization.
B
X = (X - running mean) / np.sqrt(running var)

out = x * gamma + beta

HHAHHH A AT AT AR ARSI AR AT A AR AR AT AT
END OF YOUR CODE

B B B B B B 8 B B B B A B B
[2DL: Prot. Niessner

14

BatchNorm-backword

i

TODO: Implement the backward pass for batch normalization. # @ Remarks Utl Uze

o

N, D = dout.shape

out, x norm, beta, gamma, xmu, ivar, sqrtvar, var, eps = cache the

dxnorm = dout * gamma \

:ivar i np.sum(dxr.morm * xmu, axis=0) COmputathnaL
xmul = dxnorm * ivar

dsqrtvar = -1. / (sqrtvar ** 2) * divar

dvar = 0.5 * 1. / np.sqrt(var + eps) * dsgrtvar graph O]C batCh
dsq = 1. / N * np.ones((N, D)) * dvar . ,

dmu2 = 2+ xmu * dsq normalization
dxl = dxmul + dxmu2

dmean = -1. * np.sum(dxl, axis=0) |

dx2 = 1. / N * np.ones((N, D)) * dmean Wl[l he[p you

dx = dx1 + dx2

dbeta = np.sum(dout, axis=0) undergtand the
dgamma = np.sum(dout * x norm, axis=0)
e e e L g L g g L g s

; S . backward pass
B e @

[2DL: Prof. Niessner
15

[C] show data download links train
Ignore outliers in chart scaling
loss
" = tag: train/loss
Tooltip sorting method: default v
11
09
07 Lo
@ 05
03 /| L A
Horizontal Axis |
Runs
Write a regex to filter runs |
O si
QO b m, ks
h_nor

]
X

[2DL: Prof. Niessner

tag: val/loss

« Remarks: As can
be seen from the
tensorboard, the
model with batch
normalization
(blue curve)
results in better
poerformance on
both training ana
validation set

16

Dropout (Optional)

« Remarks: Dropout Is

Y SAAN A
‘,.‘.,u e Owie®
\%w »o//‘w“m%o&

a regularization

L

technique for neura

networks by

.}
“

randomly setting
some features to
zero during the
forward pass

BN

:eﬂ‘:"»“.

AVAY

vy

9, \V»

XY
ol
lbd

—{]

()
AN
\ AV 46\‘; %
9. \V2
¢ R

4\\.
0

<
{’Q’

(b) After applying dropout.

Standard Neural Net

~~
=

[2DL: Prof. Niessner

17

Dropout-forward

if mode == 'train':
HHHHBHHHAAAAA AR RRRHA A AAAA AT AAAA AR AR ® R e m a rl/< S N Ot e
TODO: Implement the training phase forward pass for inverted dropout. # '
Store the dropout mask in the mask variable. # .
HHHRRHHAHTHHA AR A THHAAHHAAAA AR A AR AR TR AT HAAH AR A AR AR t h t L L t
mask = (np.random.rand(*x.shape) > p) / (1 - p) a \X/e \X/l no
out = x * mask i 1
d ro p Neurons at
END OF YOUR CODE
.

elif mode == 'test': test tl me
HHHRHHHHHHHHAHHHH R TR AR AR R AR HHHA AR AR
TODO: Implement the test phase forward pass for inverted dropout.
e
out = x
i
END OF YOUR CODE
o

[2DL: Prof. Niessner

Dropout-backward

if mode == 'train':

FHHHHHHHHHHHHHHHHHRHHH AT HHHHHHHHHHH AR HHHHHHH .
e Remarks: Note the

TODO: Implement the training phase backward pass for inverted dropout.
B G

Sl difference between

B 1 8 b
END OF YOUR CODE

i tr a i n i n g p h a S e a n d

elif mode == 'test':

dx = dout testing phase that
we dont apply
dropout at test time

[2DL: Prof. Niessner
19

Dropout-Training Results

TensorBoard SCALARS HPARAMS TIME SERIES

« Remarks: As can be
T e seen from the
—— "o . tensorboard, the

— (= model with dropout
cmm T has slightly higher
— training loss, but
80 ot e e the model would

0825 e
ooooooo _logs 015 064 f b tt

0.805 il I per Orm e er On
0.795 0:56 I

0.785 052

0775 048

2k 25k 3k 35k 4k 45k Tk 15k 2k 25k 3k 35k 4k 45k

H DED

[[] show data download links

Ignore outliers in chart scaling

the validation set,

n
B,
]

[2DL: Prof. Niessner
20

Questions? Plazza

[2DL: Prof. Niessner

