TUTi

Exercise 4: Solution

Loss: BCE - Forward method

def forward(self, y_out, wy_truth, individual_losses=False):

Performs the forward pass of the binary cross entropy loss function.

rparam y_out: [N,] array predicted value of your model (the Logits).
ry_truth: [N,] array ground truth value of your training set.
rreturn:

- individual_losses=False --> A single scalar, which is the mean of the binary cross entropy loss

for each sample of your training set.

- individual_losses=True --> [N,] array of binary cross entropy loss for each sample of your training set.
result = None
S R R

¥ TODO: 3
Implement the forward pass and return the output of the BCE loss.
#
#
Hint:
Have a look at the school implementation of the L1 (MAE) and the
MSE loss, and observe how the individual losses are dealt with.

R R R R R R R
result = - (y_truth * np.leog(y_out) + (1 - y_truth) * np.log(l - y_out))
if individual_losses:

return result

result = np.mean(result)

HEHREHHEEREEY H#H4H H#H4H B 1 i B RS H#H4H

END OF YOUR CODE
B R R R R R R R R S R R R R

|2D|_ PI’Of Dal return result

Loss: BCE - Backward method

def backward(self, y_out, y_truth):

Performs the backward pass of the loss function.

‘param y_out: [N,] array predicted value of your model.

ty_truth: [N,] array ground truth value of your training set.

:return: [N,] array of binary cross entropy loss gradients w.r.t y_out
for each sample of your training set.

gradient = Mone

B R R R R R R R R R R R R R R R
TODO:
Implement the backward pass. Return the gradient w.r.t to the input

to the loss function, y_out.

Hint:

Don't forget to divide by N, which i1s the number of samples in

H O H H O H H K

k3
E
E
the batch. It is crucial for the magnitude of the gradient.
R R R R R I R R R

gradient = {-(yv_truth / v_out) + (1 - yv_truth) / (1 - v_out)) / len(y_truth)

B R R S S R S B
END OF YOUR CODE
B I S S R I B

return gradient

[2DL: Prof. Dai

[2DL: Prof. Dai

Classifier: Sigmoid

def sigmoid(self, =):

Computes the ouput of the sigmoid function.

vparam x: input of the sigmoid, np.array of any shape

rreturn: output of the sigmoid with same shape as input vector x

out = MNone

B S S S R R

¥ TODO: kS
Implement the sigmoid function over the input x. Return "out™.
Note: The sigmoid() function operates element-wise.

B R L ESEEEE R R SR RRRLEELLLossssEs SRRy
out =1 7 (1 + np.exp(-x))

B R L ESEEEE R R SR RRRLEELLLossssEs SRRy
= END OF YOUR CODE s

S R R R R R R R R R R R R S R S R R R R

return out

Classifier: Forward method

dEf -FDr'“-ar'dCSEl-FJ X): #HHHHE H#HHHHEEY H#HHHHEESE HHHHHES HHHHHHES
- # TODO: #
Performs the forward pass of the model. # Implement the forward pass and return the output of the model. Note #
that wyou need to implement the function self.sigmoid() for that.
tparam X: N x D array of training data. Each row is a D-dimensional point. # Also, save in self.cache an array of all the relevant variables that #
Note that it is changed to N x (D + 1) to include the bias term. # you will need to use in the backward() function. E.g.: (X, ...) P
treturn: Predicted logits for the data in X, shape N x 1 S HHH HHSH S HE

1-dimensional array of length N with classification scores.
v = X.dot(self.uW)
Note: This simple neural-network contains TWO consecutive layers: z = self.sigmoid(y)

A fully-connected layer and a sigmoid layer.
e # Save the samples for the backward pass

assert self.W is not None, "weight matrix W is not initialized" self.cache = (X, z)

add a column of 1s to the data for the bias term

batch_size, _ = X.shape
. . H#HHEHH HHEHEHES H#HEHEHES H#HHEHHEHE H#HHEHHEHS

% = np.concatenate((X, np.ones{(batch_size, 1)})), axis=1)
END OF YOUR CODE
HHEEHEH HHEEHEHEH HHEEHEHEH HHHEHEHE HHEHEHE

output variable

vy = None
return z

[2DL: Prof. Dai

[2DL: Prof. Dai

def backward(self, dout):

Performs the backward pass of the model.

:param dout: N x M array. Upsteam derivative. It is as the same shape of the forward() output.

rreturn:

If the cutput of forward({) is z, then it is dL/dz, where L is the loss function.

dW --> Gradient of the weight matrix, w.r.t the upstream gradient 'dout’'.

Classifier: Backward method

Note: Pay attention to the order in which we calculate the derivatives. It is the opposite of the forward pass!

assert self.cache is not None, "Run a forward pass before the backward pass. Also, don't forget to store the relevat wvariablesh

dW = None

TODO:
Implement the backward pass. Return the gradient w.r.t W --> dW.
Make sure you've stored ALL needed variables in self.cache. E
#
Hint 1: It is recommended to follow the TUM article (Section 3) on
calculating the chain-rule, while dealing with matrix notations:
https://bit.ly/tum-article
#
Hint 2: Remember that the derivative of sigmoid(x) is independent of
x, and could be calculsted with the result from the forward pass.

*

kS

#

We calculate the derivatives in order, like in the chain rule.

Let us denote v = XW + b, z = sigmoid(y)

z = self.cache

1) dl/dy = dl/dz * dz / dy. According to stanford's trick:

dz_dy =z * (1 - z)
dl_dy = dout * dz_dy # Mow, this iz the upstream derivative for step 2.

%

2) dl/dw = dl/dy * dy/dw. According to stanford's trick:

dW = X.T.dot(dl_dy)

END OF YOUR CODE

Keep the dimensions of the arrays
N mind:

X: [N, D]

y: IN, 1],

d\W should be of shape [N, D] as it
contains a gradient of the output
w.rt. W for each sample (N:
number

of samples). The average over all
samples is taken in the solver step.

Optimization

Optimizer: Step method

def step(self, dw):

A wvanilla gradient descent step.

rparam dw: [D+1,1] array gradient of loss w.r.t weights of your linear model

rreturn weight: [D+1,1] updated weight after one step of gradient descent.

weight = self.model.W

I S S

TODO:
Implement the gradient descent step over the weight, using the
learning rate.

B I
weight -= self.lr * dw
B I

END OF YOUR CODE
I S S

[2DL: Prof. Dai self.model. W = weight

[2DL: Prof. Dai

Solver: Step method

def _step(self):

Make a single gradient update. This is called by train{) and should not

be called manually.

model = self.model
loss_func = self.loss_func
¥_train = self.¥_train
y_train = self.y_train

opt = self.opt

£x
TODO:

Perform the optimizer step, on higher level of abstraction.

Simply call the relevant functions of your model and the loss
function, according to the deep-learning pipline. Then, use
the optimizer wvariable to perform the step.
#
Hint 1: What inputs each step requires? How do we obtain them?
#
Hint 2: Don't forget the order of operations: forward, loss,
backward.
He
model_forward = model.forward(X_train)

loss = loss_func(model_forward, y_train)

loss_grad = loss_func.backward({model_forward, y_train)

grad = model.backward(loss_grad)

opt.step(grad)

He
END» OF YOUR CODE
He

Model and loss_func return
(forward, backward) when called,
cf. __call__(in their base classes.

Mind the dimensions of all
elements. In particular, we want to
update W (via opt.step() with an
array of the same shape, ie., [1, D]

TUTi

Questions? Piazza

[2DL: Prof. Dai

	Folie 1: Exercise 4: Solution
	Folie 2: Loss: BCE – Forward method
	Folie 3: Loss: BCE – Backward method
	Folie 4: Classifier: Sigmoid
	Folie 5: Classifier: Forward method
	Folie 6: Classifier: Backward method
	Folie 7: Optimization
	Folie 8: Optimizer: Step method
	Folie 9: Solver: Step method
	Folie 10: Questions? Piazza

