

## **Exercise 4: Solution**

I2DL: Prof. Dai

#### Loss: BCE - Forward method

def forward(self, y\_out, y\_truth, individual\_losses=False):

```
.....
```

Performs the forward pass of the binary cross entropy loss function.

:param y\_out: [N, ] array predicted value of your model (the Logits).

:y\_truth: [N, ] array ground truth value of your training set.

:return:

- individual\_losses=False --> A single scalar, which is the mean of the binary cross entropy loss for each sample of your training set.

- individual\_losses=True  $\rightarrow$  [N, ] array of binary cross entropy loss for each sample of your training set.

```
result = None
```

result = -  $(y_truth * np.log(y_out) + (1 - y_truth) * np.log(1 - y_out))$ 

```
if individual_losses:
```

return result

result = np.mean(result)

#### Loss: BCE - Backward method

def backward(self, y\_out, y\_truth):

```
.....
```

Performs the backward pass of the loss function.

```
....
```

gradient = None

# TODO: # Implement the backward pass. Return the gradient w.r.t to the input # # to the loss function, y\_out. # # # # Hint: Don't forget to divide by N, which is the number of samples in # the batch. It is crucial for the magnitude of the gradient. # gradient = (-(y truth / y out) + (1 - y truth) / (1 - y out)) / len(y truth)# END OF YOUR CODE # return gradient

### **Classifier: Sigmoid**

def sigmoid(self, x):

.....

Computes the ouput of the sigmoid function.

:param x: input of the sigmoid, np.array of any shape :return: output of the sigmoid with same shape as input vector x """

out = None

out = 1 / (1 + np.exp(-x))

| ### | ### | ## | ### | ### | ### | ### | ## | ## | ## | ## | ##  | ##  | ## | ## | #1 | ##  | ## | ## | #1 | ### | ### | ### | ##  | ## | ## | ## | ## | ## | ##  | ##  | ## | ## | ## | ## | ## | ## |
|-----|-----|----|-----|-----|-----|-----|----|----|----|----|-----|-----|----|----|----|-----|----|----|----|-----|-----|-----|-----|----|----|----|----|----|-----|-----|----|----|----|----|----|----|
| #   |     |    |     |     |     |     |    |    |    |    |     |     | E  | ND | 0  | DF  | γ  | Ό  | IR | C   | DDE | Е   |     |    |    |    |    |    |     |     |    |    |    |    |    | #  |
| ### | ### | ## | ### | ;#; | ;#; | ##: | ## | ## | ## | ## | ### | :#: | ## | ## | ## | ##: | ## | ## | #1 | ;#; | ### | ##: | ##: | ## | ## | ## | ## | ## | ### | ### | ## | ## | ## | ## | ## | ## |

### **Classifier: Forward method**

#### def forward(self, X):

.....

Performs the forward pass of the model.

:param X: N x D array of training data. Each row is a D-dimensional point. Note that it is changed to N x (D + 1) to include the bias term. :return: Predicted logits for the data in X, shape N x 1

1-dimensional array of length N with classification scores.

```
Note: This simple neural-network contains TWO consecutive layers:
A fully-connected layer and a sigmoid layer.
```

assert self.W is not None, "weight matrix W is not initialized"
# add a column of 1s to the data for the bias term
batch\_size, \_ = X.shape
X = np.concatenate((X, np.ones((batch\_size, 1))), axis=1)

# output variable

y = None

#### 

y = X.dot(self.W)
z = self.sigmoid(y)

# Save the samples for the backward pass self.cache = (X, z)

| ## | ***** | ### | ##### | *****  |  |
|----|-------|-----|-------|--------|--|
| #  | END   | OF  | YOUR  | CODE # |  |
| ## |       | ### | ##### | *****  |  |

return z

#### **Classifier: Backward method**

def backward(self, dout):

Performs the backward pass of the model.

:param dout: N x M array. Upsteam derivative. It is as the same shape of the forward() output. If the output of forward() is z, then it is dL/dz, where L is the loss function. :return: dW --> Gradient of the weight matrix, w.r.t the upstream gradient 'dout'. (dL/dw)

Note: Pay attention to the order in which we calculate the derivatives. It is the opposite of the forward pass! .....

assert self.cache is not None, "Run a forward pass before the backward pass. Also, don't forget to store the relevat variables

#### dW = None

| #  | TODO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | #  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| #  | Implement the backward pass. Return the gradient w.r.t W> dW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #  |
| #  | Make sure you've stored ALL needed variables in self.cache.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #  |
| #  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #  |
| #  | Hint 1: It is recommended to follow the TUM article (Section 3) on $\hfill \hfill \hf$ | #  |
| #  | calculating the chain-rule, while dealing with matrix notations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #  |
| #  | https://bit.ly/tum-article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | #  |
| #  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | #  |
| #  | Hint 2: Remember that the derivative of $sigmoid(x)$ is independent of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #  |
| #  | x, and could be calculated with the result from the forward pass.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #  |
| ## |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ## |

# We calculate the derivatives in order, like in the chain rule. # Let us denote y = XW + b, z = sigmoid(y)

#### X, z = self.cache

# 1) dl/dy = dL/dz \* dz / dy. According to stanford's trick: dz dv = z \* (1 - z)dl dv = dout \* dz dv # Now, this is the upstream derivative for step 2.

# 2) dl/dw = dl/dy \* dy/dw. According to stanford's trick:  $dW = X.T.dot(dl_dy)$ 

Keep the dimensions of the arrays in mind<sup>.</sup> X: [N. D] V: [N, 1], dW should be of shape [N, D] as it contains a gradient of the output w.r.t. W for each sample (N: number of samples). The average over all samples is taken in the solver step.

I2DI · Prof Dai



# Optimization

### **Optimizer: Step method**

```
def step(self, dw):
```

```
.....
```

A vanilla gradient descent step.

:param dw: [D+1,1] array gradient of loss w.r.t weights of your linear model :return weight: [D+1,1] updated weight after one step of gradient descent. """

```
weight = self.model.W
```

### Solver: Step method

def \_step(self):

.....

Make a single gradient update. This is called by train() and should not be called manually. ..... model = self.model loss func = self.loss func X\_train = self.X\_train y\_train = self.y\_train opt = self.opt \*\*\*\*\*\* # TODO: Perform the optimizer step, on higher level of abstraction. # Simply call the relevant functions of your model and the loss # # function, according to the deep-learning pipline. Then, use # # the optimizer variable to perform the step. # Hint 1: What inputs each step requires? How do we obtain them? # # Hint 2: Don't forget the order of operations: forward, loss, # backward. 

model\_forward = model.forward(X\_train)
loss = loss\_func(model\_forward, y\_train)
loss\_grad = loss\_func.backward(model\_forward, y\_train)

 Model and loss\_func return (forward, backward) when called, cf. \_\_call\_\_() in their base classes.

Mind the dimensions of all elements. In particular, we want to update W (via opt.step()) with an array of the same shape, i.e., [1, D]

I2DL: Prof. Dai



## Questions? Piazza