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Exercise 2: Math Background (Solution)

1 Linear algebra

a) A RM*XN B c RMXM ¢ ¢ RN D e R,
b) f(m):Zz 12 1xl$]Mz] —Z =17 Zé\/:1 :EjMij :sz\il xl(Ma:)z:acTMa:

c¢) Proof: Consider ||u — v||?, we have:

|u—v|* = (u —v,u —v)
= (u,u) — (u,v) — (v,u) + (v,v)
= [ull? = 2(u, v) + [|v|
=0
Hence, u = v.

*||z|| refers to the L2-norm ||x||2, unless stated otherwise.

2 Linear Least Square
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a) By definition of the gradient, we need to determine Vf(x) = 8%2 . For1 <k <n, we
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b, —bi: Sinbi = by
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The Kronecker delta is defined as follows: ¢;; = L i
if i = j.
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Hence, we obtain Vg f(z)=| %2 | =| | =b.
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b) To determine the gradient of the function f(x) = x' Ax, where A is a symmetric matrix in
S,, we can use the definition of the gradient:

Vaf() = of of oL

Ox1’ Oxs’ " Oz,

We start by computing the partial derivative of f with respect to z;.

x! x
of 0 (" - (Ax)) = oz (Az) + ' - d(Az)

= ZAijacj + ZAijxj = 22141']'.%‘]' = 2(14:}!2)Z
J J J

=e; -(Az) +x' - Ae;

where e; is the standard basis vector in the i’th direction (1 at the ¢’th, and all other entries
are 0’s).

Thus, the gradient of f is:

of (z)
ox

= [2(Az)1,2(Ax)y, ..., 2(Ax),] = 24z

Therefore, the gradient of the quadratic function f(x) = ' Ax is % =2Ax.

c) Let us first rewrite the expression:

f(z) = | Az — b|3

= (Az—b)' (Az —b)

=((Az)" —b")(Az - b)

=(x'A" —b")(Ax — b)

=z ATAz - 2" ATb-b" Az +b'b

=2 ATAz —22"ATb+b'b.
Note that €T ATb = b" Az, because both result with a scalar. Since if s € R — s = s —
z'ATb=(x"ATD)" =b" Az.
Thus, by using part a) — 8%% =band b) — 8‘””;% = 2Bz (B is symmetric), we obtain:

Vef(@) =Va(x' ATAz —22"ATb+b'b) =V, ' AT Az — V22" ATb+0
=2AT Az —2ATb=2AT (Ax —b)



3 Calculus - derivatives

a) The derivatives are:

/
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® fé(l‘) = [ZQer” = ( ) (+62.)r+(1)2 e 41) = ( (622”+(1)2 ) = (624m8+1)2
o f3(2) =

= [~ 2)log(1 — )]
~log(1—2) - (1— 2 +

1—x)-log'(1 —x)
zlog(la:)+(1:v)~aloyg(y).Z: log(1—z)+ (1 —x)
=—log(l—xz)—1

b) The gradients are:

» V=g (dlel3) = 5 (3272) = & (
o Vis= g (3llllz) = &

¢) The Jacobians are:
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d) The divergences are:

o divfy =22+ % =0

. lef9:%+%:




4 Sigmoid derivative
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5 Softmax derivative

5.1 1st approach - two cases

When deriving o(z) with respect to z, there are n x n partial derivates but we notice that they reduce
to only two distinct kinds:

o ; =0(z); wr.t z;. For example, deriving ﬁ w.r.t z1. (21 appears both in the nominator
k=

1 e
and in the denominator)

e §; = o(z); wr.t z;,i # j. For example, deriving ZL

A W.It 2 (22 appears only in the
k=1

denominator).

We first derive the first kind:
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In the last and second to last equality, we used a trick, or the observation, that we can express these
terms in means of §. In a similar fashion, we derive the second kind:
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In conclusion, the partial derivatives of the softmax layer § = o(z) with respect to its input z are
given by:

09i _ {@-(1—@» i=j
0z; =90 i F]
5.2 2nd approach - solve all in one!

A nice trick to solve both cases in one. First, we derive:

(‘Hog(si) - l 832-

82?]' S; &zj
Therefore:
0s; 1 0s; 0log(s;) 0 e =
aZj 5 S; 8,2]' N Ozj y azj Og(zgzl e?k ) 5 aZj [Z Og(kgl € )]
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With
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0y =0 i#]



6 Probability

a) We use the definition of the variance, namely
Var(X) = E[X?] — E[X]? (1)

and equivalently,
E[X?] = Var(X) + E[X]% (2)

Since X,Y ~ N(0,0?), we are given that E[X] = E[Y] = 0. With these observations, we obtain

var(XY) 2 E[X2Y?] - E[XY]?
“ EIX2E[Y?] - E[X]2E[Y]?
& (Var(X) + E[X]?) (Var(Y) + E[Y]?) - E[X]E[Y]?
= Var(X)Var(Y) + Var(X) E[Y]? +Var(Y) E[X]?
=0 =0
= Var(X)Var(Y)

(*)X,Y are independent.

b) We use the properties of the expectation and the variance of a random variable. For the mean
of Z, we observe:

X —
E[Z] = E { K }
o
1
= —E[X — /]
o
1
= - (EIX] - E[u)
1
; (e — )
=0
For the variance, remember that:
X —
Var { H
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== [])]

& (X—M_E[X]—M)]




Therefore, we observe that:

Var[Z]

In summary, we conclude that Z ~ N(0,1).




