
Introduction to Deep 
Learning (I2DL)

Exercise 5: Neural Networks
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Today’s Outline
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• Universal Approximation Theorem

• Exercise 5
– More numpy but structured
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Some background info
• You are currently in the numpy heavy part

After exercise 5 there will be less numpy implementations

3I2DL: Prof. Niessner

• Creating exercises is hard
We will take your feedback to heart but we can’t implement 
everything this semester with our current resources
Feedback is still welcome and important!



Recap: Exercise 4
• The Pillars of Deep Learning
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Data Model Solver

Dataset

Dataloader

Network

Loss/Objective

Optimizer

Training Loop

Validation
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Recap: Exercise 4
Back to the roots!

Common machine 
learning approaches:
- SVM
- Nearest Neighbors
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Universal 
Approximation 

Theorem
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Universal Approximation Theorem
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Universal Approximation Theorem
Readable proof:
https://mcneela.github.io/machine_learning/2017/03/21/
Universal-Approximation-Theorem.html
(Background: Functional Analysis, Math Major 3rd semester)

Visual proof:
http://neuralnetworksanddeeplearning.com/chap4.html
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https://mcneela.github.io/machine_learning/2017/03/21/Universal-Approximation-Theorem.html
http://neuralnetworksanddeeplearning.com/chap4.html


A word of warning
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Source: http://blog.datumbox.com/wp-content/uploads/2013/10/gradient-
descent.png

http://blog.datumbox.com/wp-content/uploads/2013/10/gradient-descent.png


How deep is your love
• Shallow

(1 hidden layer)

• Deep
(>1 hidden layer)
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Obvious Questions
• Q: Do we even need deep networks?

A: Yes. Multiple layers allow for more abstraction power 
given a fixed computational budget in comparison to a 
single layer     better at generalization
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• Q: So we just build 100 layer deep networks?
A: Not trivially ;-)

- Constraints: Memory, vanishing gradients, …
- deeper != working better



Exercise 5
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Recap: Exercise 4
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Ex4:
• Small dataset

And simple objective

• Simple classifier
Single weight matrix

• Gradient descent solver
Whole forward pass in memory

Ex5:
• CIFAR10

Actual competitive task

• Modularized Network
Chain rule rules

• Stochastic Descent
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Recap: Exercise 4
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New: Modularization
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Overview Exercise 5
• One notebook

– But a long one…

• Multiple smaller implementation objectives

deadline
Wednesday 15:59
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Outlook Ex6: CIFAR10 again
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See you next week 
☺
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