TUTi

INntroduction to Deep
[earning (I2DL)

Exercise 5 Neural Networks

[2DL: Prof. Niessner

Today's Outline

« Universal Approximation Theorem

« Exercise 5
— More numpy but structured

output layer
input layer
hidden layer

I2DL: Prof, Niessner 2

Some background info

« You are currently in the numpy heavy part
After exercise 5 there will be less numpy iImplementations

« Creating exercises is hard
We will take your feedback to heart but we can't implement
everything this semester with our current resources
Feedback is still welcome and important!

I2DL: Prof, Niessner

Recap:

« The Pillars of Deep Learning

/
Data

N

Dataset

\L

Dataloader

\
Model

_

J

I2DL: Prof, Niessner

Loss/Objective

—Xercise 4

-

Solver

N

J

(¥)

-

Optimizer

Training Loop

Validation

~

J

_
-

J

Recap: Exercise 4

SVC with linear kernel LinearSVC (linear kernel)

Back to the roots!

sepal width (cm)
sepal width (cm)

Common machine
Learrﬂﬂg approaches withRerrneI

..............

- SWM
- Nearest Neighbors

sepal width (cm)

‘ Img src: scikit-learn.org, knowyourmeme “we don't do that here”
l2DL: Prof. Niessner 9 g Y

Universal
Approximation
Theorem

[2DL: Prof. Niessner

Universal Approximation Theorem

Theorem (1989, colloguial)

For any continuous function f on a compact set K, there
exists a one layer neural network, having only a single

hidden layer + sigmoid, which uniformly approximates f to
within an arbitrary € > 0 on K.

(0.40)

[z] |
h e
Y R =03

(0.90) S
N g :

[2DL: Prof. Niessner

Universal Approximation Theorem

Readable proof:

https.//mcneela.dithub.io/machine_learning/2017/03/21/

Universal-Approximation-Theorem.html
(Background: Functional Analysis, Math Major 3rd semester)

Visual proof:
nttp.//neuralnetworksanddeeplearning.com/chap4.ntmil

I2DL: Prof. Niessner 8

https://mcneela.github.io/machine_learning/2017/03/21/Universal-Approximation-Theorem.html
http://neuralnetworksanddeeplearning.com/chap4.html

A word of warning

Source: http.//blog.datumbox.com/wp-content/uploads/2013/10/gradient-

descentpng
[2DL: Prof. Niessner

http://blog.datumbox.com/wp-content/uploads/2013/10/gradient-descent.png

How deep Is your love

e Shallow
(1 hidden layer)

 Deep
(>1 hidden layer)

[2DL: Prof. Niessner

10

Obvious Questions

« QDo we even need deep networks?
A. Yes. Multiple layers allow for more abstraction power
given a fixed computational budget in comparison to a
single layer - better at generalization

« Q: S0 we just build 100 layer deep networks?
A: Not trivially ;-)
- Constraints: Memory, vanishing gradients, ..
- deeper - working better

I2DL: Prof. Niessner 11

Exercise 5

I2DL: Prof, Niessner

Recap: Exercise 4

EX4! EX5
« Small dataset CIFAR10
And simple objective Actual competitive task
« Simple classifier e Modularized Network
Single welght matrix Chain rule rules
e Gradient descent solver « Stochastic Descent

Whole forward pass in memory

l2DL: Prof. Niessner 13

Recap:

class Classifier(Network):

Classifier of the form y = sigmoid(X x W)

def __init_ (self, num_features=2):
super(Classifier, self).__init_ ("classifier")

self.num_features = num_features
self.W = None

def initialize_weights(self, weights=None

Initialize the weight matrix W

:param weights: optional weights for inG§ ion
if weights is not None:
assert weights.shape == (self.num_features + 1, 1), \
"weights for initialization are not in the correct @hape
self.W = weights
else:
self.W = 0.001 * np.random.randn(self.num_featu 1, %)

I2DL: Prof, Niessner

—Xercise 4
ot I.‘?N‘“ o

Performs the

rward pass of the model.

Predicted labels for the data in X, shape N x 1
—dimensional array of length N with classification scores.

assert self.W is not None, "weight matrix W is not initialized"
add a column of 1s to the data for the bias term

batch_size, _ = X.shape

X = np.concatenate((X, np.ones((batch_size, 1))), axis=1)

save the samples for the backward pass

self.cache = X

X: N x D ay of training data. Each row is a D-dimensional point.

lement the forward pass and return the output of the model. Note
at you need to implement the function self.sigmoid() for that

y = X.dot(self.W)

y = self.sigmoid(y)

END OF YOUR CODE
14

New: Modularization

- 1 Si id:
Chain Rule: e Sl

pass

af af ad def forward(self, x):

a ad a :param x: Inputs, of any shape

:return out: Output, of the same shape as x
:return cache: Cache, for backward computation, of the same shape as x

def backward(self, dout, cache):

:return: dx: the gradient w.r.t. input X, of the same shape as X

I2DL: Prof. Niessner 15

Overview Exercise 5

« One notebook
— But a long one..

-

\U

deadline
Wednesday 15:59

J

« Multiple smaller implementation objectives

Definition

1 N C
CB(iy) = 57 D2 |~ vslog(ie)]
i=1 k=1

mber of samples
number of classes

.
e o
g a=z =@
7 om
S @
o g
s

. is the probability that the model assigns for the k'th class when the i'th sample is the input.
. = 1 iff the true label of the ith sample is k and 0 otherwise. This is called a cne-hot encoding

Task: Check Formula

Check for yourself that when the number of classes C'is 2, then binary ci

I2DL: Prof. Niessner

is actually eq

tropy.

Outlook Ex6: CIFAR10 again

run optimize()

-

Hyperparameters Parameters
n_layers =3)

I:I: n_neurons = 512 # E :Mpliilgn?;satiﬂﬂ
learning_rate = 0.1
n_layers =3 i

LX n_neurons = 1024 # - Eupiilrgnri‘gztinn
learming_rate = 0.01
n_layers =5)

LX n_neurons = 256 # - Ewpliilrgnri‘gsatiﬂn
learning rate = 0.1

I2DL: Prof, Niessner

22

Score

80%

92%

17

TUTi

See you next week

[2DL: Prof. Niessner

