# Introduction to Deep Learning (I2DL) 

Exercise 5: Neural Networks

## Today's Outline

- Universal Approximation Theorem
- Exercise 5
- More numpy but structured



## Some background info

- You are currently in the numpy heavy part After exercise 5 there will be less numpy implementations

- Creating exercises is hard

We will take your feedback to heart but we can't implement everything this semester with our current resources
Feedback is still welcome and important!

## Recap: Exercise 4

- The Pillars of Deep Learning



## Recap: Exercise 4

## Back to the roots!

Common machine learning approaches:

- SVM
- Nearest Neighbors

sepal length (cm)
SVC with RBF kernel


sepal length (cm)



## Universal

> Approximation Theorem

## Universal Approximation Theorem

Theorem (1989, colloquial)
For any continuous function $f$ on a compact set $K$, there exists a one layer neural network, having only a single hidden layer + sigmoid, which uniformly approximates $f$ to within an arbitrary $\varepsilon>0$ on $K$.


## Universal Approximation Theorem

## Readable proof:

https://mcneela.github.io/machine_learning/2017/03/21/
Universal-Approximation-Theorem.html
(Background: Functional Analysis, Math Major 3rd semester)

Visual proof:
http://neuralnetworksanddeeplearning.com/chap4.html

## A word of warning



Source: http://blog.datumbox.com/wp-content/uploads/2013/10/gradientdescent.png

## How deep is your love

- Shallow
(1 hidden layer)

- Deep
(>1 hidden layer)



## Obvious Questions

- Q: Do we even need deep networks?

A: Yes. Multiple layers allow for more abstraction power given a fixed computational budget in comparison to a single layer $\rightarrow$ better at generalization

- Q: So we just build 100 layer deep networks? A: Not trivially ;-)
- Constraints: Memory, vanishing gradients, .. - deeper != working better


## Exercise 5

## Recap: Exercise 4

E×4:

- Small dataset And simple objective
- Simple classifier Single weight matrix

E×5:

- CIFAR10

Actual competitive task

- Modularized Network Chain rule rules
- Stochastic Descent


## Recap: Exercise 4

class Classifier(Network)
" $\quad$ "
Classifier of the form $y=\operatorname{sigmoid}(X * W)$ ""'"
def __init__(self, num_features=2): super(Classifier, self).__init__("classifier")
self.num_features = num_features self. W = None
def initialize_weights(self, weights=None "..".

Initialize the weight matrix W :param weights: optional weights for in "!"."
if weights is not None: assert weights.shape $==$ (self.num_features $+1,1$ ), \} "weights for initialization are not in the correct self.W = weights
else:
self.W $=0.001 *$ np. random. randn(self.num featu

def forvprd(s lf $x$ ):
Performs the forward pass of the model.
:para X: $N \times D$ array of training data. Each row is a $D$-dimensional point.
: return Predicted labels for the data in X , shape $\mathrm{N} \times 1$
-dimensional array of length N with classification scores.
assert self.W is not None, "weight matrix $W$ is not initialized" \# add a column of 1 s to the data for the bias term
batch_size, _ = X.shape
$X=$ np. concatenate((X, np. ones((batch_size, 1))), axis=1)
\# save the samples for the backward pass
self. cache $=X$
\# our rriable

$\qquad$
Inslement the forward pass and return the output of the model. Note \# \# that you need to implement the function self.sigmoid() for that
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

## y = X.dot(self.W)

$y=$ self.sigmoid $(y)$

[^0]
## New: Modularization

## Chain Rule:

```
class Sigmoid:
    def __init__(self):
    pass
    def forward(self, x):
        "'!"
        :param x: Inputs, of any shape
```

        :return out: Output, of the same shape as \(x\)
        : return cache: Cache, for backward computation, of the same shape as \(x\)
        ""'"
    def backward(self, dout, cache):
        ш"
    : return: \(d x\) : the gradient w.r.t. input \(X\), of the same shape as \(X\)
    " \(\quad\) "!
    
## Overview Exercise 5

- One notebook
- But a long one...


## deadline <br> Wednesday 15:59

- Multiple smaller implementation objectives

Definition

$$
C E(\hat{y}, y)=\frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{C}\left[-y_{i k} \log \left(\hat{y}_{i k}\right)\right]
$$

where:

- $N$ is again the number of samples
- $C$ is the number of classes
- $\hat{y}_{i k}$ is the probability that the model assigns for the $k$ 'th class when the $i$ 'th sample is the input.
- $y_{i k}=1$ iff the true label of the $i$ th sample is $k$ and 0 otherwise. This is called a one-hot encoding.

Task: Check Formula
Check for yourself that when the number of classes $C$ is 2 , then binary cross-entropy is actually equivalent to cross-entropy.

## Outlook Ex6: CIFAR10 again



## See you next week

 ()
[^0]:    \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
    \# END OF YOUR CODE
    \#
    \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

