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Basic Notation

- Vector: We call an element of R" a vector with  entries.

. Elements of a vector: The th element of a vector V € R" is denoted
by V; € R.

. Matrix: We call an element of R"™™M a matrix with  rows and
columns.

. Elements of a matrix: For A € R™M we denote the element at the
th row and Jth column by A;; € R.

* Transpose: The transpose of a matrix results from “flipping” rows and
columns. We denote the transpose of a matrix A € R™™M py

AT € R™N Similarly, we use transposed vectors.
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Vector

An n-dimensional vector describes an element in an n-dimensional space

Vector
Operations:
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Vector

Vector Operations

Operations:

Fora, b € R"we have

a+b-=
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Vector Operations

Vector
Operations:

Addition

Fora, b € R"we have

a-b
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Vector
Operations:

Vector Operations

Fora € R",c € R we have
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Vector
Operations:

Definition: For a,b € R", the dot product is defined as follows:
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Vector Operations

Vector . _ Scalar
Operations: Addition Subtraction | | vyitiplication | RS
Properties:

« Commutative: a-b = Db -
« Geometric interpretation:

a-b=llall - IIbll - cos(6)

* Orthogonality: Two non-zero vectors are
orthogonal to each other & a-b =0

0 = arccos(z+y/111Y1)

[2DL: Prof. Niel3ner
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Vector Operations

Vector . _ Scalar
Operations: Addition Subtraction | | vyitiplication | RS

Properties:

« Commutative: a - b — b . WV = |W||F|cosd = (4)(4) cos 180° = —16

« Geometric interpretation: ERNIN
a-b=llall-llbll - cos(0)

* Orthogonality: Two non-zero vectors are
orthogonal to each other & a-b =0 M

v u
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Matrix

A matrix A € R™M is denoted as

Matrix
Operations:
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Matrix

Matrix Matrix-vector Matrix-matrix Hadamard
Operations: Multiplication Multiplication Product

 Multiplication of matrix with a vector is defined as follows:
bl\ (all'b1+ a12-b2+... +a1m'bm

a1 A1z . QA
dy1 dpp ... Aoy b, ay1-bi+axy-b+ .. +a,b
ForA€e R™Mbe R™A-b = Rt = . "M e Rn
a a e a
nl n2 nm bm \anl . bl + anz . b2 + ... + anm : bm

» Attention: The respective dimension have to fit, otherwise the multiplication is not well-defined.
= A -b = ¢

Ll R Rl
nxm mx1 nx1

1 2 5 1 2 ) 8
Example: A € R¥2, b € R?withA= 3 4 andb = (3) = 3 4 (3) © 18
(5 6 (5 ) (28)
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Matrix Operations

Matrix Matrix-vector Matrix-matrix Hadamard
Operations: Multiplication Multiplication Product

« Similar, the multiplication of two matrices with each other is defined as follows:
For A € R™™ B € R™! we have

dj; dqz ... Aim biy bz . by Ci11 C12 ... Cq
d1 82 .. by by .. Dby C21 C2 .. Gy
A-B=1. . A N ) 1=1. . . . | € R™! where
A @z .. Anm bmi Bm2 .. bml) Ch1 Cn2 o Cp
m
Cij = a'ik . bkj = ail . blj + a‘iZ . sz + ... + aim . bmj
¥

« Attention: Matrix Multiplication is in general not commutative, i.e. for two matrices A € R™™M B € R™" we
have A-B # B-A

[2DL: Prof. Niel3ner
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Matrix
Operations:

Matrix Operations

Matrix-vector
Multiplication

Matrix-matrix
Multiplication

Hadamard
Product

* The Hadamard product is the element wise product of two matrices. For
two matrices of the same dimension A, B € R™M it is given by

(all

a
A OB = .21

L n1

aim ) (b,
dm | b,1
anm) bnl

\

bim) (a11-byy

Dom az1 * by

bnm) \anl +Png

dim blm\

dom me

Apm * bnm)

For all matrix operations, it is important to check the dimensions!
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Tensor

* Definition: A tensor is a multidimensional array and a generalization of the
concepts of a vector and a matrix.

4 19 8
(11) : 16 3 5
Row Vector Column Vector
SCALAR (shape 1x3) (shape 3x1) MATRIX

TENSOR

12DL: Prof. Niel3ner
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Tensors In Computer Vision

color image is 3rd-order tensor

Tensors are used to => e
represent RGB a
Images. -

Hx W x RGB

(((((

Source: https://www.slideshare.net/BertonEarnshaw/a-brief-survey-of-tensors

[2DL: Prof. Niel3ner
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Norm

 Norm: measure of the “length” of a vector

« Definition: A norm is a non-negative function || - || : V = R
which is defined by the following the properties for elements

v,w e V:
1. Triangle inequality: [V + W] < |Iv]l + llw]|
2. la-Vv|l = a- |lvll for a scalar
3.]lvll = Oifandonlyif = 0
(* is a vector space over a field IF; in our case we have = R"
« Remark: Every such function defines a norm on the vector space.

« Examples: L1-norm, L2-norm



L1-Norm

 Norm: measure of the “length” of a vector
« L1-Norm: We denote the L1-norm with || -

such that for a vector V = (]vl, Vo, weey V)

Ivily = Vil
%
1
Example: LetV = -3 € RS3, then
) ( 5)
Ivil; = (1+ 3+ 2)=6 P —

I2DL: Prof. Niel3ner
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L2-Norm

* Norm: measure of the “length” of a vector

. L2-Norm: We denote the L2-norm with || - ||, : R" = IR such that for
avectorV = (V,Vy, ..., Vp)

n
Ivllz = y (vi)? A
1 0
Example: Letv = —3 € RS3, then
IVll, = /(12 + (-3)%+ 22) = /14 | S E——

I2DL: Prof. Niel3ner
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| oss functions

« Aloss function is a function that takes as input two vectors
and as output measures the distance between these two
uses a norm to measure the distance

L1-Loss uses the L1-norm, L2-Loss uses the L2-norm

e L1-Loss: The L1-Loss between two vectors V, W € R"is
defined as Ly(V,W) = lv-wll; = ZL |vi- W,

« L2-Loss: The L2-Loss between two vectors V,W € R"is
defined as

Lo(v,w) = [[v—=w]||, = \/(vl - W1)%+ ..+ (V= W,)?




Outlook

Neural 17% cat
Network > 13% dog ’m
70% deer

TENSOR
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Outlook

o
0’ W . X 17% cat
‘ — o | 13% dog
’ We R 70% deer

The elements of the matrix  are called
welights and they determine the prediction
of our network.

12DL: Prof. Niel3ner (http://www.isfpga.org/fpga2017/slides/D2_S1 02.pdf) 24
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Outlook

o
> W 17% cat
2] '+ X
‘ — o [T 13% dog
’ We R 70% deer

How can we get an accurate matrix
to minimize the loss?
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Outlook

0
0’ W . X 17% cat
‘ — o [T 13% dog
’ WeR 70% deer

Gradient Descent: Method to approximate
the best values for the weights

12DL: Prof. Niel3ner (http://www.isfpga.org/fpga2017/slides/D2_S1 02.pdf) 26
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Calculus
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Derivatives

« Well known: Scalar derivatives, i.e. derivatives of
functionsf: R - R

* Matrix calculus: Extension of calculus to higher
dimensional setting, i.e. functions like f : R" - R,
f:R-> R"f: R"> R"andf: R™ — R for
nmeN

« Actual calculus we use is relatively trivial, but the notation

can often make things look much more difficult than they
are.
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Overview

Setting Derivative Notation
fF:R->R Scalar derivative F(x)
f:R"—> R Gradient Vi(x)
f:R™ > R Gradient VT (X)
f:R"— RM Jacobian Ji
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Scalar derivatives

. Setting: f:R—-> R

Notation: f'(X) or if

) dx

« Derivative: Derivative of a function at a chosen input
value is the slope of the tangent line to the graph of the
function at that point.

I2DL: Prof. Niel3ner
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Derivation Rules
f(x)=cforce R f(x)=0
f(x) = x fix)=1

f(x) = x"forne N

f'(x) = n-x"-1

f(x) = e f'(x) = e
£(X) = In(X) Fm:;
f(x) = sin(x) f'(x) = cos(x)

f(x) = cos(x)

f'(x) = - sin(x)

I2DL: Prof. Niel3ner

32



Derivation Rules

Sum rule f(x) + 9(x) f'(x) + 9'(x)
Difference rule | f(X) - g(x) f(xX) - 9'(X)
Multiplication by . g
constant Y ¢ 109
Product rule f()-9(x) f(x)-9(x)+ f(x)-g'(X)
Quotient rule m 6990 - 1) - g0
9(x) (9(x))?
Chain rule f(9(x)) f(909) - g'(X)

I2DL: Prof. Niel3ner
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Multivariate functionsf: R" - R

Multivariate Function Gradient
f-R"> R Vf:R"> R"
Partial derivative (9f(x)")
1)

7 of(x)

= Vi:x-> VE(X) = | o

of(x)
\ 0%, )

[2DL: Prof. Niel3ner
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Multivariate functions

Multivariate Function
f: R™M > R

[2DL: Prof. Niel3ner

Gradient

VRN — RO*M

Vi :x—- Vf(X) =

(of(x)  of(x)
0X11 0X12
of(x)  af(x)
0X21 0X22
of(x)  af(x)

\ %1 OXn2

f: R™M > R

af(x) )
0X1m
of(x)
0Xom

of(x)
m
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Gradient — Example 1

af (x, Af(x,
f(X,y)=3x2y Vf(x’y)= f(Xy)’ f(x}’)

[ Ox dy ]
0 , ) ,
axByx = 3y ax X = 3y2x = 6yx
0

0 dy
3x2y = 3x? ayy = 3x2 , =3x?x 1= 3x?

ady dy

s Surface:
z=f(x, y)

ofxy) 9fxYy)

[ Ox dy = [6yx, 3x7]

Vix,y) =

[2DL: Prof. Niel3ner https://www.zhihu.com/question/36301367 36
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Gradient — Example 2

gxy) = 2x+y"

8 0x
Igly) _ 02x 0y" _ 0 g ok q=2
0x dx  Ox 0x

dg(x, 02x 0yt
gbey) _ 92x 0y = 0+ 8y = 8y
dy dy 0y

7

X Surface:

z=f(x,y) Vg (x, y) = [2, 8y7]

[2DL: Prof. Niel3ner https://www.zhihu.com/question/36301367 37
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Vector-valued functions

Vector-Valued
function

f: R"—> RM

( X1 ) ( f1 (X) )
X2 F2(x)

") \ﬁn(x))

I2DL: Prof. Niel3ner

Jacobian Matrix

Ji : RN — RMT

X— Ji(X) =

(o) 9h(X)
0% 0%y

oM(x)  0f,(X)
0% 0%y

IMa(x) ()
\ 0Xq 0%y

af,(x) )
0%,

0f,(x)
0%,

0fm(X)
6Xn )
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Jacobian Matrix — Example 3

fi (X,
Assume that f : R? —» R? with f(X,y) = ( f;EX, g) where
fi(x,y) = 3x4y and f,(X,y) = 2x + Y5,
Calculate Jacobian matrix:
(ofi(xy)  Afi(xy) )
2
Ew ay | 6Xy 3X

Ji(X) = oL(xy) 9f(xYy) _( 2 8y7)

\ax ay)

I2DL: Prof. Niel3ner
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Single Variable Chain Rule

Setting: We are given the function h(x) = f(g(x)).
Task: Compute the derivative of this function with chain rule.

1. Introduce the intermediate variable: Let U = ¢(X) be the intermediate
variable.

. oo df - dg _ du
2. Compute individual derivatives: — and =
du dx dx
dh df du
3. Chain rule: = .
dx du dx

4. Substitute intermediate variables back

I2DL: Prof. Niel3ner
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Single Variable Chain Rule: Example

Example: Let h(X) = sin(x?).
Task: Compute the derivative of this function with chain rule.
Observation: Here, h(x) = f(g(x)) with f(X) = sin(x) and g(x) = X2.

1. Introduce the intermediate variable: Let U = X? be the intermediate variable.

. oo di dg _ du
2. Compute individual derivatives: — = €0S(U) and = = 2X
du dx  dx
dh df du
3. Chain rule: = - = cos(u) - 2x
dx du dx
dh
4. Substitute intermediate variables back: x cos(u) - 2x = cos(x?) - 2x

I2DL: Prof. Niel3ner
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Total Derivative Chain Rule

General Formalism:

Of (X, Uy (X), ., Un(X)) _ Of  of du;  of du, of auy,
= + + e ——
dX dx du; dx  du, OX du, 0X

of o of Gui

= — + S
0X 21 du; 0X

I2DL: Prof. Niel3ner
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Probability space ({1, F, [P)

A probability space consist of three elements ({2, F, IP):
. Sample space (): The set of all outcomes of a random experiment.

. Event Space F: Asetwhose elements A € F (called events) are subsets of ().

. Probability measure IP: Afunction P : F — [0, 1] that satisfies the following
three properties:
1.P(A)=2 OforalAE F
2.P(Q) = 1
n n

3. IP( U Ai) =y P(A;) for n € N and disjoint events A, A, ...A, € F
i=1 i=1

I2DL: Prof. Niel3ner
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Probabllity space: Example

A probability space consists of three elements: (1, F, P)
Sample space {): The set of all outcomes of a random experiment.
Event Space F: A set whose elements A € F (called events) are subsets of ().
Probability measure IP: A function P : F — [0, 1] that satisfies the following three properties: (...)

Example: Tossing a six-sided die
- Sample space: () = {1,2,3,4,5,6}
* Eventspace: F{ = {0, Q}, F, = P(Q),
Fi={0,A = {1,3,5},A, = {2,4,6},Q = {1,2,3,4,5,6}}
« Probability measure P : F — Rwith P(@) = 0, P(Q2) = 1 and in the case of F 3 we know that
P(A;) + P(Ay) = 1.
« Example event space F 3 : Possible probability measure are

1
L Py(A) = 5 = P1(A2)

1 3
2. Pz(Al) = Z and Pz(Az) = —.

I2DL: Prof. Niel3ner
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Random variable

« Arandom variable is a function defined on the
probability space which maps from the sample space
to the real numbers, i.e.

X: 0 - R

* We distinguish between discrete and continuous
random variables.

I2DL: Prof. Niel3ner
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Random variable

Example: Tossing a fair six-sided die @

1
Underlying experiment: Q = {1,2,3,4,5,6}, F = P(Q), P({x}) = EVX € Q

Random variable : Number that appears on the die, X : Q — {1,2,3,4,5,6}
— discrete random variable

Example: One elementin  is = 4. Then X(w) = 4.
Probability measure IP:

P(X = 4) = Pw € Q : X(w) = » = 4}) = P({4}) = %

I2DL: Prof. Niel3ner
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Random variable

Z

Example: Flipping a fair coin two times (
- Underlying experiment: 0 = {(H,H), (H, T), (T,H), (T, T)}, .

F = P(Q) and P({w}) = %\m €Q

- Random variable : number of heads that appeared in the two flips, X : 1 = {0,1,2}
= discrete random variable

- Example: One elementin Q is w = (T, H). Then X(w) = 1.
 Probability measure P:

P(X=1)=P{w € Q: X(w)=1}) = P{(H,T),(T,H)}) = %

I2DL: Prof. Niel3ner
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Random variable

Example: radioactive decay
- Underlying experiment: = R,o, F = B(Q), P = isthe Lebesgue
measure

« Random variable : indicating amount of time that it takes for a radioactive
particle to decay, X : R,g = R,y = continuous random variable

« Probability measure IP: is defined on the set of events F and

IS now used for random variables as follows:
Plas X<b)=PH{we Q:as< X(w) £ b})

I2DL: Prof. Niel3ner
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Probablility measures

— specify the probability measures with alternative
functions (CDF, PDF and PMF)

Random
Variable

Cumulative distribution function  Probability mass function

Discrete (CDF) (PMF)
Fx(X) = P(X < X) pPx(X) = P(X = Xx)

Cumulative distribution function Probability distribution

Continuous (CDF) function (PDF)
Fx(X) = P(X < X)

I2DL: Prof. Niel3ner
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Cumulative Distribution Function

 Acumulative distribution function (CDF) of a random variable is
a function Fy : R = [0,1] which is defined as

F(X) = P(X < X)
* Properties: Per definition, it satisfies the following properties:
1.0s (X)) 1 Q
2. lim Fy(X)= 0 o

X——00 07t
3. IimFy(X) =1 ;
X— 00 |
4. Vx <y = Fy(X) = F(Y) |

+ 3 2 4 0 1 2 3 4 %
A sample CDF

[Figure: http://cs229.stanford.edu/section/cs229-prob.pdf] 53
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Discrete Case: Probability Mass Function

* The probability mass function of a random variable is a
function Py : {1 = R defined as

px(X) = P(X = X)
* Properties: Again, we can derive some properties:
1.0 py(x) = 1

2 _ 0.51
) Px(X) = 1 0.3
XEQ 0.2 I I
A

A sample PMF

I2DL: Prof. Niel3ner _ - L . .
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Discrete Example: Sum of 2 Dice Rolls

0,18
0,14
0,09

0,05

0,00 I
2

w I

[2DL: Prof. Niel3ner
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0,00
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8 9 10 11 12
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Continuous case: Probability Density Function

- Continuous case: For some continuous random variables, the CDF Fy(X)
Is differentiable everywhere. Then we define the probability density function

as the function fy(X) : 0 — R with

09 =

dx

* Properties:
1. fx%) >0 F(x)A

Z'f fy(x)dx = 1
100

3.1 (0dx = F(b) - Fx(@)

-
X

I2DL: Prof. Niel3ner ] - ) ]
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Expectation of a random variable

 Idea: “weighted average” of the values that the random variable
can take on

* Discrete setting: Assume that is a discrete random variable
with PMF Py (X). Then the expectation of is given by

E[X] = 5 X~ px(X)
XEQ

« Continuous setting: Assume that Is a continuous random
variable with PDF fy(X). Then the expectation of is given by
o

E[X] = I X« fy(X) dX

— 00

I2DL: Prof. Niel3ner
57



Expectation: Example

Example: Tossing a six-sided die
Q ={1,2,3,4,5,6}
X: represents the outcome of the toss

Py(X) = P(X = X) = %VX €
1

1 1
E[X]:Z X'px(X)=1'g+2'g+--- +5-6—+ 6 -

XEQ

[2DL: Prof. Niel3ner
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Expectation of a random variable

Properties: We encounter several important properties
for the expectation, I.e.

1. E[a] = afor any constanta € R
2. Linearity: E[aX + bY] = a - E[X] + b - E[Y] for any
constants a,b € R

I2DL: Prof. Niel3ner

59



Variance of a random variable

 |dea: The variance of a random variable is a measure
how concentrated the distribution of a random variable

IS around its mean.
 Definition: The variance Is defined as

Var(X) = E

I2DL: Prof. Niel3ner

E

(X - E[X]]

X?] - E[X

’]

2

qj,u,ai(x)




Variance of a random variable

Example: Tossing a fair six-sided die

Q = {1,2,3,4,5,6}, X: represents the outcome of the toss @
px(x) = P(X=X) = %VX € ()

1 1 35
Var(X) = E[X?] - E[X]?= 15= - 12— = > ~ 291
6 4 12

[2DL: Prof. Niel3ner
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Variance of a random variable

* Properties: The variance has the following
properties, I.e.
1. Var(a) = 0 for any constanta € R
2.Var(a- X+ b) = a? - var(X)

(P,U,GZ(X)

[2DL: Prof. Niel3ner



Standard Probability Distributions

Parameter &

Distribution Notation PDF or PMF Variance [llustration
Bernoulli X ~ Ber(p) - > o
distribution 0< p< 1 Px(k) = pi(1 - P) E[X]=p Var(X)=p(l-p)
(Discrete) ! R

0 1
Binomial X ~ Bin(n, p)

n -
distribution e npeo1] PO (PP EX]=n-p  Var(X)=np(l- p) I N { } T
(Discrete) PR te.

>

0 n
Uniform X ~U(ab) L~ x e [a,b] 1 1
- . . = (b-4a) ! = — = _— (b-2a)2
Sl —ow<a<b<ow L {o else e 2 (arh) Vvarx) 12 (b-2a) ___>
(Continuous) a b

Normal X ~ N (w02 -

o ; f = 1 ;Zl(x__cu)z - 2 4
distribution ¢ g 52 ¢ R., x(X) = 0—\/%6 E[X] = n Var(X) = o g

(Continuous) T
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References

« http://cs229.stanford.edu/section/cs229-prob.pdf
— Comprehensive Probability Review — recommended!
 https://stanford.edu/~shervine/teaching/cme-106/cheatsheet-
probability
— Quick Overview
 https://www.deeplearningbook.org/contents/prob.html
— Another great resource. Also covers information theory basics.
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