Tा

Introduction to Deep Learning (I2DL)

Exercise 2: Math Recap

Overview

Linear Algebra

- Vectors and matrices
- Basic operations on matrices \& vectors
- Tensors
- Norms, Loss functions

Calculus

- Scalar derivatives
- Gradient
- Jacobian Matrix
- Chain Rule

Probability Theory

- Probability space
- Random variables
- PMF, PDF, CDF
- Mean, variance
- Standard probability distributions

Linear Algebra

Overview

Linear Algebra

- Vectors and matrices
- Basic operations on matrices \& vectors
- Tensors
- Norm, loss function

Probability Theory

- Probability space
- Random variables
- PMF, PDF, CDF
- Mean, variance
- Standard probability distributions

Calculus

- Scalar derivatives
- Gradient
- Jacobian Matrix
- Chain Rule

Basic Notation

- Vector: We call an element of \mathbb{R}^{n} a vector with entries.
- Elements of a vector: The th element of a vector $v \in \mathbb{R}^{n}$ is denoted by $v_{i} \in \mathbb{R}$.
- Matrix: We call an element of $\mathbb{R}^{n \times m}$ a matrix with rows and columns.
- Elements of a matrix: For $A \in \mathbb{R}^{n \times m}$, we denote the element at the th row and j th column by $A_{i j} \in \mathbb{R}$.
- Transpose: The transpose of a matrix results from "flipping" rows and columns. We denote the transpose of a matrix $A \in \mathbb{R}^{n \times m}$ by $A^{T} \in \mathbb{R}^{m \times n}$. Similarly, we use transposed vectors.

Vector

An n-dimensional vector describes an element in an n-dimensional space

Vector
Operations:

Dot Product

Vector Operations

Vector
Operations:

Dot Product

For $a, b \in \mathbb{R}^{n}$ we have

$$
a+b=\left(\begin{array}{c}
a_{1}+b_{1} \\
a_{2}+b_{2} \\
\vdots \\
a_{n}+b_{n}
\end{array}\right) \in \mathbb{R}^{n}
$$

Vector Operations

Vector
Operations:

Subtraction

Dot Product

For $a, b \in \mathbb{R}^{n}$ we have

$$
a-b=\left(\begin{array}{c}
a_{1}-b_{1} \\
a_{2}-b_{2} \\
\vdots \\
a_{n}-b_{n}
\end{array}\right) \in \mathbb{R}^{n}
$$

Vector Operations

Vector
Operations:

Dot Product

For $a \in \mathbb{R}^{n}, c \in \mathbb{R}$ we have

$$
c \cdot a=\left(\begin{array}{c}
c \cdot a_{1} \\
c \cdot a_{2} \\
\vdots \\
c \cdot a_{n}
\end{array}\right) \in \mathbb{R}^{n}
$$

Vector Operations

Vector
Operations:

Subtraction

Scalar
Multiplication

Dot Product

Definition: For $a, b \in \mathbb{R}^{n}$, the dot product is defined as follows:

$$
\begin{aligned}
a \cdot b & =a^{T} \cdot b \\
& =a_{1} \cdot b_{1}+a_{2} \cdot b_{2}+\ldots+a_{n} \cdot b_{n} \\
& =\sum_{i=1} a_{i} \cdot b_{i} \in \mathbb{R}
\end{aligned}
$$

Vector Operations

Vector
Operations:

Dot Product

Properties:

- Commutative: $a \cdot b=b$.
- Geometric interpretation:

$$
a \cdot b=\|a\| \cdot\|b\| \cdot \cos (\theta)
$$

- Orthogonality: Two non-zero vectors are orthogonal to each other $\Leftrightarrow a \cdot b=0$

Vector Operations

Vector
Operations:

Addition

Scalar
Multiplication

Dot Product

Properties:

- Commutative: $a \cdot b=b$.
- Geometric interpretation:

$$
a \cdot b=\|a\| \cdot\|b\| \cdot \cos (\theta)
$$

- Orthogonality: Two non-zero vectors are orthogonal to each other $\Leftrightarrow a \cdot b=0$

```
\vec{u}\cdot\vec{v}=|\vec{u}|\vec{v}|\operatorname{cos}0=(4)(4)\operatorname{cos}18\mp@subsup{0}{}{\circ}=-16
```

$\vec{u} \cdot \vec{v}=-16$

Matrix

A matrix $A \in \mathbb{R}^{n \times m}$ is denoted as

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 m} \\
a_{21} & a_{22} & \ldots & a_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n m}
\end{array}\right) \in \mathbb{R}^{n \times m}
$$

Matrix
Operations:

Matrix-vector
Multiplication

Matrix-matrix
Multiplication

Hadamard
Product

Matrix

Matrix Operations:

Matrix-vector Multiplication

Matrix-matrix Multiplication

Hadamard Product

- Multiplication of matrix with a vector is defined as follows:

$$
\text { For } A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^{m}: A \cdot b=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 m} \\
a_{21} & a_{22} & \ldots & a_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n m}
\end{array}\right) \cdot\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)=\left(\begin{array}{c}
a_{11} \cdot b_{1}+a_{12} \cdot b_{2}+\ldots+a_{1 m} \cdot b_{m} \\
a_{21} \cdot b_{1}+a_{22} \cdot b_{2}+\ldots+a_{2 m} \cdot b_{m} \\
\vdots \\
a_{n 1} \cdot b_{1}+a_{n 2} \cdot b_{2}+\ldots+a_{n m} \cdot b_{m}
\end{array}\right) \in \mathbb{R}^{n}
$$

- Attention: The respective dimension have to fit, otherwise the multiplication is not well-defined.

$$
\Rightarrow \underset{n \times m}{A} \cdot \underset{m \times 1}{\omega}=\underset{n \times 1}{c}
$$

. Example: $A \in \mathbb{R}^{3 \times 2}, b \in \mathbb{R}^{2}$ with $\left.A=\begin{array}{cc}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right)$ and $\left.\left.\left.b=\begin{array}{c}2 \\ 3\end{array}\right) \Rightarrow \begin{array}{cc}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right) .\binom{2}{(3)}=\begin{array}{c}8 \\ 18 \\ 28\end{array}\right)$

Matrix Operations

Matrix Operations:

Matrix-vector Multiplication

Matrix-matrix Multiplication

Hadamard Product

- Similar, the multiplication of two matrices with each other is defined as follows:

For $A \in \mathbb{R}^{n \times m}, B \in \mathbb{R}^{m \times l}$ we have
$A \cdot B=\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 m} \\ a_{21} & a_{22} & \ldots & a_{2 m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n m}\end{array}\right) \cdot\left(\begin{array}{cccc}b_{11} & b_{12} & \ldots & b_{1 l} \\ b_{21} & b_{22} & \ldots & b_{2 l} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m 1} & b_{m 2} & \ldots & b_{m l}\end{array}\right)=\left(\begin{array}{cccc}c_{11} & c_{12} & \ldots & c_{1 l} \\ c_{21} & c_{22} & \ldots & c_{2 l} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n 1} & c_{n 2} & \ldots & c_{n l}\end{array}\right) \in \mathbb{R}^{n \times l}$ where
$c_{i j}=\sum_{k=1}^{m} a_{i k} \cdot b_{k j}=a_{i 1} \cdot b_{1 j}+a_{i 2} \cdot b_{2 j}+\ldots+a_{i m} \cdot b_{m j}$

- Attention: Matrix Multiplication is in general not commutative, i.e. for two matrices $A \in \mathbb{R}^{n \times m}, B \in \mathbb{R}^{m \times n}$ we have $A \cdot B \neq B \cdot A$

Matrix Operations

Hadamard Product

- The Hadamard product is the element wise product of two matrices. For two matrices of the same dimension $A, B \in \mathbb{R}^{n \times m}$ it is given by

$$
A \odot B=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 m} \\
a_{21} & \ldots & a_{2 m} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \ldots & a_{n m}
\end{array}\right) \cdot\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 m} \\
b_{21} & \ldots & b_{2 m} \\
\vdots & \ddots & \vdots \\
b_{n 1} & \ldots & b_{n m}
\end{array}\right)=\left(\begin{array}{ccc}
a_{11} \cdot b_{11} & \ldots & a_{1 m} \cdot b_{1 m} \\
a_{21} \cdot b_{21} & \ldots & a_{2 m} \cdot b_{2 m} \\
\vdots & \ddots & \vdots \\
a_{n 1} \cdot b_{n 1} & \ldots & a_{n m} \cdot b_{n m}
\end{array}\right) \in \mathbb{R}^{n \times m}
$$

For all matrix operations, it is important to check the dimensions!

Tensor

- Definition: A tensor is a multidimensional array and a generalization of the concepts of a vector and a matrix.

Tensors in Computer Vision color image is 3rd-order tensor

Tensors are used to represent RGB images.
 ```H\timesW\timesRGB```

Norm

- Norm: measure of the "length" of a vector
- Definition: A norm is a non-negative function $\|\cdot\|: V \rightarrow \mathbb{R}$ which is defined by the following the properties for elements $v, w \in V$:

1. Triangle inequality: $\|v+w\| \leq\|v\|+\|w\|$
2. $\|a \cdot v\|=a \cdot\|v\|$ for a scalar
3. $\|v\|=0$ if and only if $=0$
(* is a vector space over a field \mathbb{F}; in our case we have $=\mathbb{R}^{n}$)

- Remark: Every such function defines a norm on the vector space.
- Examples: L1-norm, L2-norm

L1-Norm

- Norm: measure of the "length" of a vector
- L1-Norm: We denote the L1-norm with $\|\cdot\|_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that for a vector $v=\left(v_{n}, v_{2}, \ldots, v_{n}\right)$

$$
\|v\|_{1}=\sum_{i=1}\left|v_{i}\right|
$$

1
Example: Let $\left.v=\begin{array}{c}-3 \\ 2\end{array}\right) \in \mathbb{R}^{3}$, then
$\|v\|_{1}=(1+3+2)=6$

L2-Norm

- Norm: measure of the "length" of a vector
- L2-Norm: We denote the L2-norm with $\|\cdot\|_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that for a vector $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$

$$
\|v\|_{2}=\sqrt{\sum_{i=1}^{n}\left(v_{i}\right)^{2}}
$$

$$
\begin{aligned}
& \text { Example: Let } \left.v=\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right) \in \mathbb{R}^{3} \text {, then } \\
& \|v\|_{2}=\sqrt{\left(1^{2}+(-3)^{2}+2^{2}\right)}=\sqrt{14}
\end{aligned}
$$

Loss functions

- A loss function is a function that takes as input two vectors and as output measures the distance between these two uses a norm to measure the distance
L1-Loss uses the L1-norm, L2-Loss uses the L2-norm
- L1-Loss: The L1-Loss between two vectors $v, w \in \mathbb{R}^{n}$ is defined as $L_{1}(v, w)=\|v-w\|_{1}=\sum_{i=1}^{n} \mid v_{i}-w_{i}$
- L2-Loss: The L2-Loss between two vectors $v, w \in \mathbb{R}^{n}$ is defined as

$$
L_{2}(v, w)=\|v-w\|_{2}=\sqrt{\left(v_{1}-w_{1}\right)^{2}+\ldots+\left(v_{n}-w_{n}\right)^{2}}
$$

Outlook

Outlook

The elements of the matrix are called

 weights and they determine the prediction of our network.
Outlook

Outlook

Gradient Descent: Method to approximate the best values for the weights

Calculus

Overview

Linear Algebra

- Vectors and matrices
- Basic operations on matrices \& vectors
- Tensors
- Norm \& Loss functions

Calculus

- Scalar derivatives
- Gradient
- Jacobian Matrix
- Chain Rule

Probability Theory

- Probability space
- Random variables
- PMF, PDF, CDF
- Mean, variance
- Standard probability distributions

Derivatives

- Well known: Scalar derivatives, i.e. derivatives of functions $f: \mathbb{R} \rightarrow \mathbb{R}$
- Matrix calculus: Extension of calculus to higher dimensional setting, i.e. functions like $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, $f: \mathbb{R} \rightarrow \mathbb{R}^{n}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ for $n, m \in \mathbb{N}$
- Actual calculus we use is relatively trivial, but the notation can often make things look much more difficult than they are.

Overview

Setting	Derivative	Notation
$f: \mathbb{R} \rightarrow \mathbb{R}$	Scalar derivative	$f^{\prime}(x)$
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$	Gradient	$\nabla f(x)$
$f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$	Gradient	$\nabla f(x)$
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$	Jacobian	J_{f}

Scalar derivatives

- Setting: $f: \mathbb{R} \rightarrow \mathbb{R}$

Notation: $f^{\prime}(x)$ or $\frac{\mathrm{d} f}{\mathrm{~d} x}$

- Derivative: Derivative of a function at a chosen input value is the slope of the tangent line to the graph of the function at that point.

Derivation Rules

Common functions	Derivative
$f(x)=c$ for $c \in \mathbb{R}$	$f^{\prime}(x)=0$
$f(x)=x$	$f^{\prime}(x)=1$
$f(x)=x^{n}$ for $n \in \mathbb{N}$	$f^{\prime}(x)=n \cdot x^{n-1}$
$f(x)=e^{x}$	$f^{\prime}(x)=e^{x}$
$f(x)=\ln (x)$	$f^{\prime}(x)=\frac{1}{x}$
$f(x)=\sin (x)$	$f^{\prime}(x)=\cos (x)$
$f(x)=\cos (x)$	$f^{\prime}(x)=-\sin (x)$

Derivation Rules

Rule	Function	Derivative
Sum rule	$f(x)+g(x)$	$f^{\prime}(x)+g^{\prime}(x)$
Difference rule	$f(x)-g(x)$	$f^{\prime}(x)-g^{\prime}(x)$
Multiplication by constant	$c \cdot f(x)$	$c \cdot f^{\prime}(x)$
Product rule	$f(x) \cdot g(x)$	$\frac{f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)}{}$
Quotient rule	$\frac{f(x)}{g(x)}$	$f(g(x))$

Multivariate functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

Multivariate Function

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

Gradient

$$
\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

Multivariate functions $f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$

Multivariate Function

$f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$

Gradient

$\nabla f: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}^{n \times m}$

$$
\nabla f: x \rightarrow \nabla f(x)=\left(\begin{array}{cccc}
\frac{\partial f(x)}{\partial x_{11}} & \frac{\partial f(x)}{\partial x_{12}} & \cdots & \frac{\partial f(x)}{\partial x_{1 m}} \\
\frac{\partial f(x)}{\partial x_{21}} & \frac{\partial f(x)}{\partial x_{22}} & \cdots & \frac{\partial f(x)}{\partial x_{2 m}} \\
\vdots & & & \\
\frac{\partial f(x)}{\partial x_{n 1}} & \frac{\partial f(x)}{\partial x_{n 2}} & \cdots & \frac{\partial f(x)}{\partial x_{n m}}
\end{array}\right)
$$

Gradient - Example 1

$$
\begin{aligned}
& f(x, y)=3 x^{2} y \quad \nabla f(x, y)=\left[\frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y}\right] \\
& \frac{\partial}{\partial x^{3}} y x^{2}=3 y \frac{\partial}{\partial x} x^{2}=3 y 2 x=6 y x \\
& \frac{\partial}{\partial y^{3}} x^{2} y=3 x^{2} \frac{\partial}{\partial y^{y}} y=3 x^{2} \frac{\partial y}{\partial y}=3 x^{2} \times 1=3 x^{2} \\
& \nabla f(x, y)=\left[\frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y}\right]=\left[6 y x, 3 x^{2}\right]
\end{aligned}
$$

Gradient - Example 2

$$
\begin{aligned}
& g(x, y)=2 x+y^{8} \\
& \frac{\partial g(x, y)}{\partial x}=\frac{\partial 2 x}{\partial x}+\frac{\partial y^{8}}{\partial x}=2 \frac{\partial x}{\partial x}+0=2 \times 1=2 \\
& \frac{\partial g(x, y)}{\partial y}=\frac{\partial 2 x}{\partial y}+\frac{\partial y^{8}}{\partial y}=0+8 y^{7}=8 y^{7} \\
& \nabla g(x, y)=\left[2,8 y^{7}\right]
\end{aligned}
$$

Vector-valued functions

Vector-Valued function

Jacobian Matrix

$$
J_{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m \times n}
$$

$$
\begin{aligned}
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
f: x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
f_{1}(x) \\
f_{2}(x) \\
\vdots \\
f_{m}(x)
\end{array}\right)
\end{aligned} \quad \quad x \rightarrow J_{f}(x)=\left(\begin{array}{cccc}
\frac{\partial f(x)}{\partial x_{1}} & \frac{\partial f_{f}(x)}{\partial x_{2}} & \cdots & \frac{\partial f(x)}{\partial x_{n}} \\
\frac{\partial_{f}(x)}{\partial x_{1}} & \frac{\partial f_{f}(x)}{\partial x_{2}} & \cdots & \frac{\partial f(x)}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f(x)}{\partial x_{1}} & \frac{\partial f_{f}(x)}{\partial x_{2}} & \cdots & \frac{\partial f_{m}(x)}{\partial x_{n}}
\end{array}\right) .
$$

Jacobian Matrix - Example 3

Assume that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $f(x, y)=\begin{gathered}f_{1}(x, y) \\ \left(f_{2}(x, y)\right)\end{gathered}$ where $f_{1}(x, y)=3 x^{2} y$ and $f_{2}(x, y)=2 x+y^{8}$.

Calculate Jacobian matrix:

$$
\left.J_{f}(x)=\left(\begin{array}{ll}
\frac{\partial f_{1}(x, y)}{\partial x} & \frac{\partial f_{1}(x, y)}{\partial y} \\
\frac{\partial f_{2}(x, y)}{\partial x} & \frac{\partial f_{2}(x, y)}{\partial y}
\end{array}\right)=\begin{array}{cc}
6 x y & 3 x^{2} \\
2 & 8 y^{7}
\end{array}\right)
$$

Single Variable Chain Rule

Setting: We are given the function $h(x)=f(g(x))$.
Task: Compute the derivative of this function with chain rule.

1. Introduce the intermediate variable: Let $u=g(x)$ be the intermediate variable.
2. Compute individual derivatives: $\frac{\mathrm{d} f}{\mathrm{~d} u}$ and $\frac{\mathrm{d} g}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x}$
3. Chain rule: $\frac{\mathrm{d} h}{\mathrm{~d} x}=\frac{\mathrm{d} f}{\mathrm{~d} u} \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x}$
4. Substitute intermediate variables back

Single Variable Chain Rule: Example

Example: Let $h(x)=\sin \left(x^{2}\right)$.
Task: Compute the derivative of this function with chain rule.
Observation: Here, $h(x)=f(g(x))$ with $f(x)=\sin (x)$ and $g(x)=x^{2}$.

1. Introduce the intermediate variable: Let $u=x^{2}$ be the intermediate variable.
2. Compute individual derivatives: $\frac{\mathrm{d} f}{\mathrm{~d} u}=\cos (u)$ and $\frac{\mathrm{d} g}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x}=2 x$
3. Chain rule: $\frac{\mathrm{d} h}{\mathrm{~d} x}=\frac{\mathrm{d} f}{\mathrm{~d} u} \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x}=\cos (u) \cdot 2 x$
4. Substitute intermediate variables back: $\frac{\mathrm{d} h}{\mathrm{~d} x}=\cos (u) \cdot 2 x=\cos \left(x^{2}\right) \cdot 2 x$

Total Derivative Chain Rule

General Formalism:

$$
\begin{aligned}
\frac{\partial f\left(x, u_{1}(x), \ldots, u_{n}(x)\right)}{\partial x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial u_{1}} \frac{\partial u_{1}}{\partial x}+\frac{\partial f}{\partial u_{2}} \frac{\partial u_{2}}{\partial x}+\ldots+\frac{\partial f}{\partial u_{n}} \frac{\partial u_{n}}{\partial x} \\
& =\frac{\partial f}{\partial x}+\sum_{i=1}^{n} \frac{\partial f}{\partial u_{i}} \frac{\partial u_{i}}{\partial x}
\end{aligned}
$$

References

- https://en.wikipedia.org/wiki/Matrix_calculus
- http://parrt.cs.usfca.edu/doc/matrix-calculus/index.html
- https://arxiv.org/pdf/1802.01528.pdf
- https://www.khanacademy.org/math/multivariable-calculus/ multivariable-derivatives
- https://explained.ai/matrix-calculus/
- http://www.deeplearningbook.org/contents/part basics.html
- https://towardsdatascience.com/calculating-gradient-descent-manually-6d9bee09aa00

Probability Theory

Overview

Linear Algebra

- Vectors and matrices
- Basic operations on matrices \& vectors
- Tensors
- Norm \& Loss functions

Calculus

- Scalar derivatives
- Gradient
- Jacobian Matrix
- Chain Rule

Probability Theory

- Probability space
- Random variables
- PMF, PDF, CDF
- Mean, variance
- Standard probability distributions

Probability space $(\Omega, \mathcal{F}, \mathbb{P})$

A probability space consist of three elements $(\Omega, \mathcal{F}, \mathbb{P})$:

- Sample space Ω : The set of all outcomes of a random experiment.
- Event Space \mathcal{F} : A set whose elements $A \in \mathcal{F}$ (called events) are subsets of Ω.
- Probability measure $\mathbb{P}:$ A function $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ that satisfies the following three properties:

1. $\mathbb{P}(A) \geq 0$ for all $A \in \mathcal{F}$
2. $\mathbb{P}(\Omega)=1$
3. $\mathbb{P}\left(\underset{i=1}{\bigcup^{n}} A_{i}=\sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)\right.$ for $n \in \mathbb{N}$ and disjoint events $A_{1}, A_{2}, \ldots A_{n} \in \mathcal{F}$

The probability space provides a formal model of a random experiment.

Probability space: Example

A probability space consists of three elements: $(\Omega, \mathcal{F}, \mathbb{P})$

- Sample space Ω : The set of all outcomes of a random experiment.
- Event Space \mathcal{F} : A set whose elements $A \in \mathcal{F}$ (called events) are subsets of Ω.
- Probability measure $\mathbb{P}:$ A function $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ that satisfies the following three properties: (...)

Example: Tossing a six-sided die

- Sample space: $\Omega=\{1,2,3,4,5,6\}$
- Event space: $\mathcal{F}_{1}=\{\emptyset, \Omega\}, \mathcal{F}_{2}=\mathcal{P}(\Omega)$, $\mathcal{F}_{3}=\left\{\emptyset, A_{1}=\{1,3,5\}, A_{2}=\{2,4,6\}, \Omega=\{1,2,3,4,5,6\}\right\}$
- Probability measure $\mathbb{P}: \mathcal{F} \rightarrow \mathbb{R}$ with $\mathbb{P}(\varnothing)=0, \mathbb{P}(\Omega)=1$ and in the case of \mathcal{F}_{3} we know that $\mathbb{P}\left(A_{1}\right)+\mathbb{P}\left(A_{2}\right)=1$.
- Example event space \mathcal{F}_{3} : Possible probability measure are

1. $\mathbb{P}_{1}\left(A_{1}\right)=\frac{1}{2}=\mathbb{P}_{1}\left(A_{2}\right)$
2. $\mathbb{P}_{2}\left(A_{1}\right)=\frac{1}{4}$ and $\mathbb{P}_{2}\left(A_{2}\right)=\frac{3}{4}$.

Random variable

- A random variable is a function defined on the probability space which maps from the sample space to the real numbers, i.e.

$$
X: \Omega \rightarrow \mathbb{R}
$$

- We distinguish between discrete and continuous random variables.

Random variable

- A random variable is a function defined on the probability space which maps from the sample space to the real numbers, i.e. $X: \Omega \rightarrow \mathbb{R}$.

Example: Tossing a fair six-sided die

- Underlying experiment: $\Omega=\{1,2,3,4,5,6\}, \mathcal{F}=\mathcal{P}(\Omega), \mathbb{P}(\{x\})=\frac{1}{6} \forall x \in \Omega$
- Random variable : Number that appears on the die, $X: \Omega \rightarrow\{1,2,3,4,5,6\}$
\Rightarrow discrete random variable
- Example: One element in Ω is $=4$. Then $X(\omega)=4$.
- Probability measure \mathbb{P} :

$$
\mathbb{P}(X=4)=\mathbb{P}(\{\omega \in \Omega: X(\omega)=\omega=4\})=\mathbb{P}(\{4\})=\frac{1}{6}
$$

Random variable

- A random variable is a function defined on the probability space which maps from the sample space to the real numbers, i.e. $X: \Omega \rightarrow \mathbb{R}$.

Example: Flipping a fair coin two times

- Underlying experiment: $\Omega=\{(H, H),(H, T),(T, H),(T, T)\}$, $\mathcal{F}=\mathcal{P}(\Omega)$ and $\mathbb{P}(\{\omega\})=\frac{1}{4} \forall \omega \in \Omega$

- Random variable : number of heads that appeared in the two flips, $X: \Omega \rightarrow\{0,1,2\}$ \Rightarrow discrete random variable
- Example: One element in Ω is $\omega=(T, H)$. Then $X(\omega)=1$.
- Probability measure \mathbb{P} :
$\mathbb{P}(X=1)=\mathbb{P}(\{\omega \in \Omega: X(\omega)=1\})=\mathbb{P}(\{(H, T),(T, H)\})=\frac{1}{2}$

Random variable

- A random variable is a function defined on the probability space which maps from the sample space to the real numbers, i.e. $X: \Omega \rightarrow \mathbb{R}$.

Example: radioactive decay

- Underlying experiment: $\Omega=\mathbb{R}_{\geq 0}, \mathcal{F}=\mathcal{B}(\Omega), \mathbb{P}=$ is the Lebesgue measure
- Random variable : indicating amount of time that it takes for a radioactive particle to decay, $X: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0} \Rightarrow$ continuous random variable
- Probability measure \mathbb{P} : is defined on the set of events \mathcal{F} and is now used for random variables as follows: $\mathbb{P}(a \leq X \leq b)=\mathbb{P}(\{\omega \in \Omega: a \leq X(\omega) \leq b\})$

Probability measures

\Rightarrow specify the probability measures with alternative functions (CDF, PDF and PMF)

Random Variable		
Discrete	Cumulative distribution function (CDF) $F_{X}(x)=\mathbb{P}(X \leq x)$	Probability mass function $\begin{gathered} (\mathrm{PMF}) \\ p_{X}(x)=\mathbb{P}(X=x) \end{gathered}$
Continuous	Cumulative distribution function (CDF) $F_{X}(x)=\mathbb{P}(X \leq x)$	Probability distribution function (PDF)

Cumulative Distribution Function

- A cumulative distribution function (CDF) of a random variable is a function $F_{X}: \mathbb{R} \rightarrow[0,1]$ which is defined as

$$
F_{X}(x)=\mathbb{P}(X \leq x)
$$

- Properties: Per definition, it satisfies the following properties:

$$
\text { 1. } 0 \leq F_{X}(x) \leq 1
$$

2. $\lim F_{X}(x)=0$

$$
x \rightarrow-\infty
$$

3. $\lim F_{X}(x)=1$
$x \rightarrow \infty$

$$
\text { 4. } \forall x \leq y \Longrightarrow F_{X}(x) \leq F_{X}(y)
$$

Discrete Case: Probability Mass Function

- The probability mass function of a random variable is a function $p_{X}: \Omega \rightarrow \mathbb{R}$ defined as

$$
p_{X}(x)=\mathbb{P}(X=x)
$$

- Properties: Again, we can derive some properties:

$$
\begin{aligned}
& \text { 1. } 0 \leq p_{X}(x) \leq 1 \\
& 2 . \sum_{x \in \Omega} \sum p_{X}(x)=1
\end{aligned}
$$

Discrete Example: Sum of 2 Dice Rolls

PMF

Continuous case: Probability Density Function

- Continuous case: For some continuous random variables, the CDF $F_{X}(x)$ is differentiable everywhere. Then we define the probability density function as the function $f_{X}(x): \Omega \rightarrow \mathbb{R}$ with

$$
f_{X}(x)=\frac{\mathrm{d} F_{X}(x)}{\mathrm{d} x}
$$

Note: the value

- Properties:
of a PDF at

1. $f_{X}(x) \geq 0$
2. $\int_{\bar{b}^{\infty}} f_{X}(x) \mathrm{d} x=1$
3. $\int_{a} f_{X}(x) \mathrm{d} x=F_{X}(b)-F_{X}(a)$

Expectation of a random variable

- Idea: "weighted average" of the values that the random variable can take on
- Discrete setting: Assume that is a discrete random variable with PMF $p_{X}(x)$. Then the expectation of is given by

$$
\mathbb{E}[X]=\sum_{x \in \Omega} x \cdot p_{X}(x)
$$

- Continuous setting: Assume that is a continuous random variable with PDF $f_{X}(x)$. Then the expectation of is given by ∞

$$
\mathbb{E}[X]=\int_{-\infty} x \cdot f_{X}(x) \mathrm{d} x
$$

Expectation: Example

- Discrete setting: Assume that is a discrete random variable with PMF $p_{X}(x)$. Then the expectation of is given by

$$
\mathbb{E}[X]=\sum_{x \in \Omega} x \cdot p_{X}(x)
$$

Example: Tossing a six-sided die

$$
\Omega=\{1,2,3,4,5,6\}
$$

X: represents the outcome of the toss

$$
p_{X}(x)=\mathbb{P}(X=x)=\frac{1}{6} \forall x \in \Omega
$$

$$
\mathbb{E}[X]=\sum_{x \in \Omega} x \cdot p_{X}(x)=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+\ldots+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}=3.5
$$

Expectation of a random variable

Properties: We encounter several important properties for the expectation, i.e.

1. $\mathbb{E}[a]=a$ for any constant $a \in \mathbb{R}$
2. Linearity: $\mathbb{E}[a X+b Y]=a \cdot \mathbb{E}[X]+b \cdot \mathbb{E}[Y]$ for any constants $a, b \in \mathbb{R}$

Variance of a random variable

- Idea: The variance of a random variable is a measure how concentrated the distribution of a random variable is around its mean.
- Definition: The variance is defined as

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] \\
& =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
\end{aligned}
$$

Variance of a random variable

Definition: The variance is defined as $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$

Example: Tossing a fair six-sided die

$$
\begin{gathered}
\Omega=\{1,2,3,4,5,6\}, X: \text { represents the outcome of the toss } \\
p_{X}(x)=\mathbb{P}(X=x)=\frac{1}{6} \forall x \in \Omega \\
\mathbb{E}[X]=3.5, \mathbb{E}[X]^{2}=12 \frac{1}{4} \\
\mathbb{E}\left[X^{2}\right]=\sum_{x \in \Omega} x^{2} \cdot p_{X}(x)=1^{2} \cdot \frac{1}{6}+2^{2} \cdot \frac{1}{6}+\ldots+52 \cdot \frac{1}{6}+6^{2} \cdot \frac{1}{6}=15 \frac{1}{6} \\
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=15 \frac{1}{6}-12 \frac{1}{4}=\frac{35}{12} \approx 2.91
\end{gathered}
$$

Variance of a random variable

- Properties: The variance has the following properties, i.e.

1. $\operatorname{Var}(a)=0$ for any constant $a \in \mathbb{R}$
2. $\operatorname{Var}(a \cdot X+b)=a^{2} \cdot \operatorname{Var}(X)$

Standard Probability Distributions

Parameter \&
 Notation
 PDF or PMF

$p_{X}(k)=p^{k}(1-p)^{1-k}$

$$
\mathbb{E}[X]=p \quad \operatorname{Var}(X)=p(1-p)
$$

$$
p_{X}(k)=\begin{gathered}
n \\
(k)
\end{gathered} p^{k}(1-p)^{n-k}
$$

$\mathbb{E}[X]=n \cdot p \quad \operatorname{Var}(X)=n p(1-p)$

Illustration

Bernoulli distribution (Discrete)	$X \sim \operatorname{Ber}(p)$ $0 \leq p \leq 1$	$p_{X}(k)=p^{k}(1-p)^{1-k}$	$\mathbb{E}[X]=p$	$\operatorname{Var}(X)=p(1-p)$	
Binomial distribution (Discrete)	$X \sim \operatorname{Bin}(n, p)$				
$n \in \mathbb{N}, p \in[0,1]$	$p_{X}(k)=c_{(k)}^{n} p^{k}(1-p)^{n-k}$	$\mathbb{E}[X]=n \cdot p$	$\operatorname{Var}(X)=n p(1-p)$		

References

- http://cs229.stanford.edu/section/cs229-prob.pdf
- Comprehensive Probability Review - recommended!
- https://stanford.edu/~shervine/teaching/cme-106/cheatsheetprobability
- Quick Overview
- https://www.deeplearningbook.org/contents/prob.html
- Another great resource. Also covers information theory basics.

