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Exercise 2: Math Background

We use the following notations in this exercise:

• Scalars are denoted with lowercase letters. E.g. x, ϕ

• Vectors are denoted with bold lowercase letters. E.g. x, ϕ

• Matrices are denoted with bold uppercase letters. E.g. X, Σ

1 Linear algebra

Tasks:

a) Let
f(x, y) = x⊤Ay + x⊤Bx − Cy + D

with x ∈ RM , y ∈ RN , function f : RM × RN → R.
Compute the dimensions of the matrices A, B, C, D for the function so that the mathematical
expression is valid.

b) Let x ∈ RN , M ∈ RN×N . Express the function f(x) =
∑N

i=1
∑N

j=1 xixjMij using only matrix-
vector multiplications.

c) Suppose u, v ∈ V , where V is a vector space. ||u|| = ||v|| = 1 and ⟨u, v⟩ = 1. Prove that
u = v.

1



IN2346 SS 23

2 Linear Least Square

In this exercise, we want to determine the gradients for a few simple functions, which will be helpful
for the upcoming lectures.

Note: Remember the definition of a gradient: The gradient of a scalar-valued function f : Rn → R,
denoted by ∇f , is a vector-valued function that gives, geometrically, the rate and direction of the
steepest ascent of f at each point in Rn. The components of the gradient are the partial derivatives
of f with respect to each coordinate axis, and are written as:

∇f =


∂f
∂x1
∂f
∂x2...
∂f

∂xn


where x1, x2, . . . , xn are the coordinates of a point in Rn.

a) For x ∈ Rn, let f : Rn → R with f(x) = b⊤x for some known vector b ∈ Rn. Determine the
gradient of the function f .
Hint: Use that f(x) = b⊤x =

∑n
i=1 bixi.

b) Now consider the quadratic function f : Rn → R with f(x) = x⊤Ax for a symmetric matrix
A ∈ Sn. Determine the gradient of the function f .
Hint: A symmetric matrix A ∈ Sn satisfies that Aij = Aji for all 1 ≤ i, j ≤ n.

c) Now let us go a step further and let us determine the derivative of the following function
f : Rn → R with

f(x) = ∥Ax − b∥2
2 = (Ax − b)⊤(Ax − b)

where A ∈ Rm×n and b ∈ Rm.
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3 Calculus - derivatives

a) Compute the derivatives for the following functions: fi : R → R, i ∈ {1, 2, 3}

• f1 : f1(x) = (x3 + x + 1)2

• f2 : f2(x) = e2x−1
e2x+1

• f3 : f3(x) = (1 − x) log(1 − x) (Note: In this course, log(x) = loge(x) = ln(x))

b) For a function f : Rn → R, the gradient is defined as ∇f = ( ∂f
∂x1

, . . . , ∂f
∂xn

). Calculate the
gradients of the following functions: fi : R2 → R, i ∈ {4, 5}

• f4 : f4(x) = 1
2 ||x||22

• f5 : f5(x) = 1
2 ||x||2

c) For a function f : Rn → Rm, the Jacobian is defined as

J =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
... . . . ...

∂fm

∂x1
∂fm

∂x2
· · · ∂fm

∂xn


Calculate the Jacobian matrix of the following functions: fi : Rn → Rm, i ∈ {6, 7}

• f6 : R × R → R2, f6(r, φ) = (r cos φ, r sin φ)⊤

• f7 : R → R2, f7(t) = (r cos t, r sin t)⊤

d) For a function f : Rn → Rn the divergence is defined as divf =
∑N

i=1
∂fi
∂xi

. Calculate the
divergence for the following functions: fi : Rn → Rn, i ∈ {8, 9}

• f8 : R2 → R2, f8(x, y) = (−y, x)⊤

• f9 : R2 → R2, f9(x, y) = (x, y)⊤
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4 Sigmoid derivative

In this question we will derive the derivative of the sigmoid function:

σ(x) = 1
1 + e−x

As seen in lecture 02, the sigmoid function is a popular activation function used in machine learning,
which maps any input value to a value between 0 and 1. In logistic regression, the sigmoid function
is used to map the output of the regression algorithm to a probability between 0 and 1, which can
be interpreted as the probability of an input belonging to a particular class. This probability is then
used to make a binary decision about whether the input belongs to the class or not.

Figure 1: The sigmoid function

a) Find the derivative of the sigmoid function: ∂σ(x)
∂x

b) Show that the derivative expression that you’ve found in the previous task could be represented
with the sigmoid function iteslf, i.e.:

∂σ(x)
∂x

= σ(x)(1 − σ(x))

Hint: e−x = e−x + 1 − 1
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5 Softmax derivative

In this exercise, we want to take a look at the softmax function, which is a common activation function
in neural networks in order to normalize the output of a network to a probability distribution over
predicted output classes. We will discuss the softmax function later in this lecture in more detail.

The softmax function σ : Rn → Rn is defined by

σ(z)i = ezi∑n
j=1 ezj

for 1 ≤ i ≤ n and z =
(
z1 z2 . . . zn

)
⊤. In the expanded form, we write:

ŷ = σ(z1, z2, . . . zn) =
[

ez1∑n
k=1 ezk

,
ez2∑n

k=1 ezk
, · · · ,

ezn∑n
k=1 ezk

]
.

Determine the derivative of the softmax function.

Hint: Deriving σ(z) with respect to z will lead to n×n partial derivatives, i.e. ∂σ(z)i

∂zj
for 1 ≤ i, j ≤ n.

It is important to consider the two cases (1) i = j and (2) i ̸= j
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6 Probability

a) Variance.

We say that two random variables X, Y are independent if and only if the joint cumulative
distribution function FX,Y (x, y) satisfies

FX,Y (x, y) = FX(x)FY (y).

In the case of independence, the following property holds for these variables: Let g, h be two
real-valued functions defined on the codomains of X, Y , respectively. Then

E[g(X)h(Y )] = E[g(X)] · E[h(Y )].

Assume that X, Y are two random variables that are independent and identical distributed
(i.i.d.) with X, Y ∼ N (0, σ2). Prove that

Var(XY ) = Var(X)Var(Y )

Remember this property, as it will play an important role at a later point of the lecture, when
we take a look at the initialization of the weights of a neural network (Xavier initialization).

b) Normal distribution.

Remark: The family of random variables that are normally distributed is closed under linear
transformation, that means if X is normally distributed, then for every a, b ∈ R the random
variable aX + b is normally distributed.

For this exercise, assume that the random variable X is normally distributed with mean µ and
variance σ2, i.e. X ∼ N (µ, σ2). Let Z = X−µ

σ . From the remark, we know that Z is again
normally distributed. Determine the mean and the variance of the random variable Z.
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