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Exercise 2: Math Background

We use the following notations in this exercise:
e Scalars are denoted with lowercase letters. E.g. x, ¢
e Vectors are denoted with bold lowercase letters. E.g. x, ¢

e Matrices are denoted with bold uppercase letters. E.g. X, X

1 Linear algebra

Tasks:

a) Let
f(z,y)=x"Ay+a"'Bx —Cy+ D

with & € RM y € RN, function f: RM x RN = R.
Compute the dimensions of the matrices A, B, C, D for the function so that the mathematical
expression is valid.

b) Let z € RN, M € RV*N, Express the function f(z) = >N, Zévzl x;x;M;; using only matrix-
vector multiplications.

c) Suppose u,v € V, where V is a vector space. ||u|| = ||v]| =1 and (u,v) = 1. Prove that
u=w.



2 Linear Least Square

In this exercise, we want to determine the gradients for a few simple functions, which will be helpful
for the upcoming lectures.

Note: Remember the definition of a gradient: The gradient of a scalar-valued function f : R"™ — R,
denoted by V f, is a vector-valued function that gives, geometrically, the rate and direction of the
steepest ascent of f at each point in R™. The components of the gradient are the partial derivatives
of f with respect to each coordinate axis, and are written as:

of
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of
Vf — Oza
of
0xn

where 1,9, ..., z, are the coordinates of a point in R".

a) For x € R?, let f: R® — R with f(z) = bz for some known vector b € R”. Determine the
gradient of the function f.
Hint: Use that f(z) =b'x = 31 bix;.

b) Now consider the quadratic function f : R® — R with f(z) = 2" Az for a symmetric matrix
A € S,,. Determine the gradient of the function f.
Hint: A symmetric matrix A € S,, satisfies that A;; = Aj; for all 1 <14,j <n.

c) Now let us go a step further and let us determine the derivative of the following function
f:R" = R with
fl@) = || Az — b3 = (Az — ) " (Az — b)

where A € R™*™ and b € R™.



3 Calculus - derivatives

a) Compute the derivatives for the following functions: f; : R — R, i € {1,2,3}
« fiifil@) = (@ +ao+1)?
o fo:fola) = Srt
e f3: fa(z) = (1 —x)log(l —z) (Note: In this course, log(x) = log.(z) = In(x))

b) For a function f : R® — R, the gradient is defined as Vf = (aanl, cee 687{1). Calculate the
gradients of the following functions: f; : R> = R, i € {4,5}

o fu:fa(x) = 5|3
o« f51 (@) = 5l

c) For a function f : R™ — R™, the Jacobian is defined as
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Calculate the Jacobian matrix of the following functions: f; : R — R™ i € {6,7}
o fo:RxR —=R2 fs(r,0) = (rcosep,rsinp)’
o fr:R = R2 f;(t) = (rcost,rsint)’

d) For a function f : R™ — R"™ the divergence is defined as divf = Zﬁ\il gi,c?. Calculate the
divergence for the following functions: f; : R™ — R" i € {8,9}

* f8 : R2 — R27f8(xay) = (_y7x)—|—
o fo:R2R2 fo(z,y) = (z,y)"



4 Sigmoid derivative

In this question we will derive the derivative of the sigmoid function:
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As seen in lecture 02, the sigmoid function is a popular activation function used in machine learning,
which maps any input value to a value between 0 and 1. In logistic regression, the sigmoid function
is used to map the output of the regression algorithm to a probability between 0 and 1, which can
be interpreted as the probability of an input belonging to a particular class. This probability is then
used to make a binary decision about whether the input belongs to the class or not.

sig(t)

Figure 1: The sigmoid function

a) Find the derivative of the sigmoid function: %

b) Show that the derivative expression that you've found in the previous task could be represented
with the sigmoid function iteslf, i.e.:

do(x)
5y — 0@ -0o(2))

Hint: e =e " +1-1



5 Softmax derivative

In this exercise, we want to take a look at the softmax function, which is a common activation function
in neural networks in order to normalize the output of a network to a probability distribution over
predicted output classes. We will discuss the softmax function later in this lecture in more detail.

The softmax function ¢ : R™ — R"™ is defined by

2

6 1
O—(Z)Z = n Zj
j=1¢
forl<i<nandz= (zl 29 ... zn) T. In the expanded form, we write:
el e? e*n
g =o0(z1,29,...2n) = e
Yy ( 1,42, n) |:ZZ_1 e P Zzzl e ) ) Zzzl ek

Determine the derivative of the softmax function.

Hint: Deriving o(z) with respect to z will lead to n x n partial derivatives, i.e. % forl1 <i,5 <n.
J

It is important to consider the two cases (1) i = j and (2) i # j



6 Probability

a)

Variance.

We say that two random variables X,Y are independent if and only if the joint cumulative
distribution function F'x y (x,y) satisfies

Fxy(2,y) = Fx(2)Fy (y).

In the case of independence, the following property holds for these variables: Let g, h be two
real-valued functions defined on the codomains of X, Y, respectively. Then

Assume that X,Y are two random variables that are independent and identical distributed
(ii.d.) with X, Y ~ N(0,0?). Prove that

Var(XY) = Var(X)Var(Y)

Remember this property, as it will play an important role at a later point of the lecture, when
we take a look at the initialization of the weights of a neural network (Xavier initialization).

Normal distribution.

Remark: The family of random variables that are normally distributed is closed under linear
transformation, that means if X is normally distributed, then for every a,b € R the random
variable aX + b is normally distributed.

For this exercise, assume that the random variable X is normally distributed with mean p and
variance 02, i.e. X ~ N(p,0?). Let Z = % From the remark, we know that Z is again
normally distributed. Determine the mean and the variance of the random variable Z.



