Technical University Munich

Informatics

Exercise 2: Math Background

We use the following notations in this exercise:

- Scalars are denoted with lowercase letters. E.g. x, ϕ
- Vectors are denoted with bold lowercase letters. E.g. $\boldsymbol{x}, \boldsymbol{\phi}$
- Matrices are denoted with bold uppercase letters. E.g. $\boldsymbol{X}, \boldsymbol{\Sigma}$

1 Linear algebra

Tasks:
a) Let

$$
f(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}+\boldsymbol{x}^{\top} \boldsymbol{B} \boldsymbol{x}-\boldsymbol{C} \boldsymbol{y}+\boldsymbol{D}
$$

with $\boldsymbol{x} \in \mathbb{R}^{M}, \boldsymbol{y} \in \mathbb{R}^{N}$, function $f: \mathbb{R}^{M} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$.
Compute the dimensions of the matrices $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$ for the function so that the mathematical expression is valid.
b) Let $\boldsymbol{x} \in \mathbb{R}^{N}, \boldsymbol{M} \in \mathbb{R}^{N \times N}$. Express the function $f(\boldsymbol{x})=\sum_{i=1}^{N} \sum_{j=1}^{N} x_{i} x_{j} M_{i j}$ using only matrixvector multiplications.
c) Suppose $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{V}$, where \boldsymbol{V} is a vector space. $\|\boldsymbol{u}\|=\|\boldsymbol{v}\|=1$ and $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=1$. Prove that $\boldsymbol{u}=\boldsymbol{v}$.

2 Linear Least Square

In this exercise, we want to determine the gradients for a few simple functions, which will be helpful for the upcoming lectures.
Note: Remember the definition of a gradient: The gradient of a scalar-valued function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, denoted by ∇f, is a vector-valued function that gives, geometrically, the rate and direction of the steepest ascent of f at each point in \mathbb{R}^{n}. The components of the gradient are the partial derivatives of f with respect to each coordinate axis, and are written as:

$$
\nabla f=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right)
$$

where $x_{1}, x_{2}, \ldots, x_{n}$ are the coordinates of a point in \mathbb{R}^{n}.
a) For $x \in \mathbb{R}^{n}$, let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $f(x)=b^{\top} x$ for some known vector $b \in \mathbb{R}^{n}$. Determine the gradient of the function f.
Hint: Use that $f(x)=b^{\top} x=\sum_{i=1}^{n} b_{i} x_{i}$.
b) Now consider the quadratic function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $f(x)=x^{\top} A x$ for a symmetric matrix $A \in \mathbb{S}_{n}$. Determine the gradient of the function f.
Hint: A symmetric matrix $A \in \mathbb{S}_{n}$ satisfies that $A_{i j}=A_{j i}$ for all $1 \leq i, j \leq n$.
c) Now let us go a step further and let us determine the derivative of the following function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with

$$
f(x)=\|A x-b\|_{2}^{2}=(A x-b)^{\top}(A x-b)
$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$.

3 Calculus - derivatives

a) Compute the derivatives for the following functions: $f_{i}: \mathbb{R} \rightarrow \mathbb{R}, i \in\{1,2,3\}$

- $f_{1}: f_{1}(x)=\left(x^{3}+x+1\right)^{2}$
- $f_{2}: f_{2}(x)=\frac{e^{2 x}-1}{e^{2 x}+1}$
- $f_{3}: f_{3}(x)=(1-x) \log (1-x)$ (Note: In this course, $\left.\log (x)=\log _{e}(x)=\ln (x)\right)$
b) For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the gradient is defined as $\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)$. Calculate the gradients of the following functions: $f_{i}: \mathbb{R}^{2} \rightarrow \mathbb{R}, i \in\{4,5\}$
- $f_{4}: f_{4}(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{x}\|_{2}^{2}$
- $f_{5}: f_{5}(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{x}\|_{2}$
c) For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the Jacobian is defined as

$$
\mathbb{J}=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

Calculate the Jacobian matrix of the following functions: $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, i \in\{6,7\}$

- $f_{6}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^{2}, f_{6}(r, \varphi)=(r \cos \varphi, r \sin \varphi)^{\top}$
- $f_{7}: \mathbb{R} \rightarrow \mathbb{R}^{2}, f_{7}(t)=(r \cos t, r \sin t)^{\top}$
d) For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ the divergence is defined as $\operatorname{div} f=\sum_{i=1}^{N} \frac{\partial f_{i}}{\partial x_{i}}$. Calculate the divergence for the following functions: $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, i \in\{8,9\}$
- $f_{8}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f_{8}(x, y)=(-y, x)^{\top}$
- $f_{9}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f_{9}(x, y)=(x, y)^{\top}$

4 Sigmoid derivative

In this question we will derive the derivative of the sigmoid function:

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

As seen in lecture 02 , the sigmoid function is a popular activation function used in machine learning, which maps any input value to a value between 0 and 1 . In logistic regression, the sigmoid function is used to map the output of the regression algorithm to a probability between 0 and 1 , which can be interpreted as the probability of an input belonging to a particular class. This probability is then used to make a binary decision about whether the input belongs to the class or not.

Figure 1: The sigmoid function
a) Find the derivative of the sigmoid function: $\frac{\partial \sigma(x)}{\partial x}$
b) Show that the derivative expression that you've found in the previous task could be represented with the sigmoid function iteslf, i.e.:

$$
\frac{\partial \sigma(x)}{\partial x}=\sigma(x)(1-\sigma(x))
$$

Hint: $e^{-x}=e^{-x}+1-1$

5 Softmax derivative

In this exercise, we want to take a look at the softmax function, which is a common activation function in neural networks in order to normalize the output of a network to a probability distribution over predicted output classes. We will discuss the softmax function later in this lecture in more detail.

The softmax function $\sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined by

$$
\sigma(z)_{i}=\frac{e^{z_{i}}}{\sum_{j=1}^{n} e^{z_{j}}}
$$

for $1 \leq i \leq n$ and $z=\left(\begin{array}{llll}z_{1} & z_{2} & \ldots & z_{n}\end{array}\right) \top$. In the expanded form, we write:

$$
\hat{y}=\sigma\left(z_{1}, z_{2}, \ldots z_{n}\right)=\left[\frac{e^{z_{1}}}{\sum_{k=1}^{n} e^{z_{k}}}, \frac{e^{z_{2}}}{\sum_{k=1}^{n} e^{z_{k}}}, \cdots, \frac{e^{z_{n}}}{\sum_{k=1}^{n} e^{z_{k}}}\right]
$$

Determine the derivative of the softmax function.
Hint: Deriving $\sigma(z)$ with respect to z will lead to $n \times n$ partial derivatives, i.e. $\frac{\partial \sigma(z)_{i}}{\partial z_{j}}$ for $1 \leq i, j \leq n$. It is important to consider the two cases (1) $i=j$ and (2) $i \neq j$

6 Probability

a) Variance.

We say that two random variables X, Y are independent if and only if the joint cumulative distribution function $F_{X, Y}(x, y)$ satisfies

$$
F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y) .
$$

In the case of independence, the following property holds for these variables: Let g, h be two real-valued functions defined on the codomains of X, Y, respectively. Then

$$
\mathbb{E}[g(X) h(Y)]=\mathbb{E}[g(X)] \cdot \mathbb{E}[h(Y)] .
$$

Assume that X, Y are two random variables that are independent and identical distributed (i.i.d.) with $X, Y \sim \mathcal{N}\left(0, \sigma^{2}\right)$. Prove that

$$
\operatorname{Var}(X Y)=\operatorname{Var}(X) \operatorname{Var}(Y)
$$

Remember this property, as it will play an important role at a later point of the lecture, when we take a look at the initialization of the weights of a neural network (Xavier initialization).

b) Normal distribution.

Remark: The family of random variables that are normally distributed is closed under linear transformation, that means if X is normally distributed, then for every $a, b \in \mathbb{R}$ the random variable $a X+b$ is normally distributed.
For this exercise, assume that the random variable X is normally distributed with mean μ and variance σ^{2}, i.e. $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Let $Z=\frac{X-\mu}{\sigma}$. From the remark, we know that Z is again normally distributed. Determine the mean and the variance of the random variable Z.

