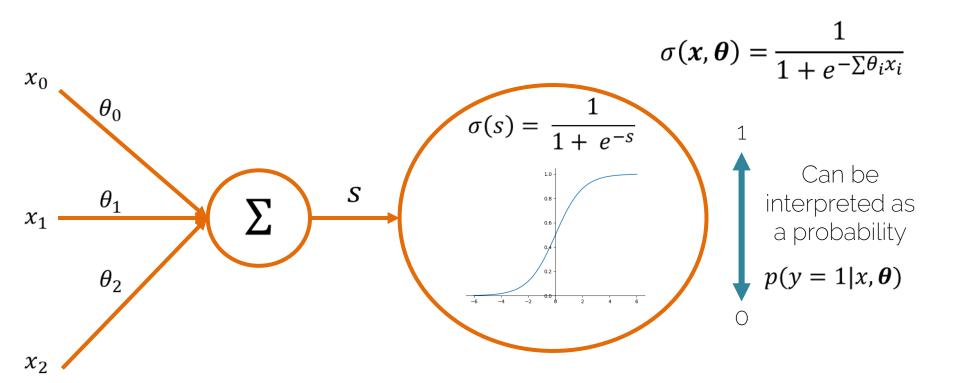


Data Augmentation and Advanced Regularization

Lecture 7 Recap

Binary Classification: Sigmoid



Multiclass Classification: Softmax

• Softmax

$$p(y_i|x_i,\Theta) = \frac{e^{s_{y_i}}}{\sum_{k=1}^{C} e^{s_k}} = \frac{e^{x_i\theta_{y_i}}}{\sum_{k=1}^{C} e^{x_i\theta_k}}$$
Probability of the true class

training pairs $[x_i; y_i]$, $x_i \in \mathbb{R}^D$, $y_i \in \{1, 2 \dots C\}$ y_i : label (true class)

Parameters:

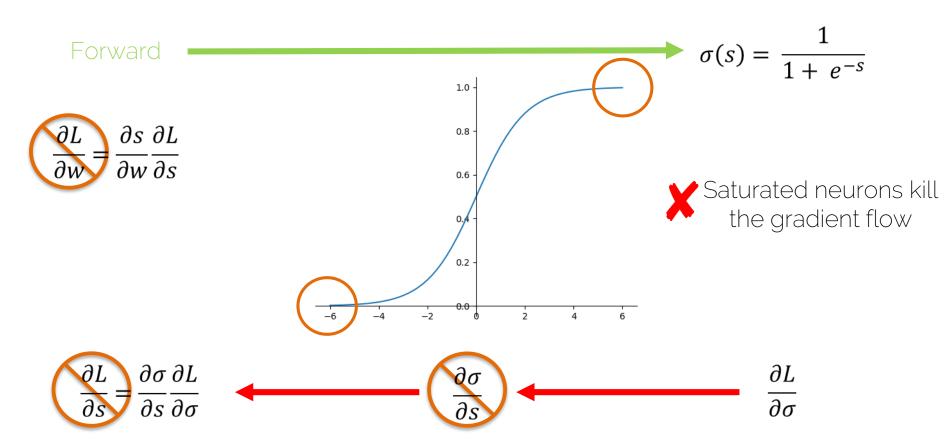
$$\mathbf{\Theta} = [\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots, \boldsymbol{\theta}_C]$$

C: number of classes

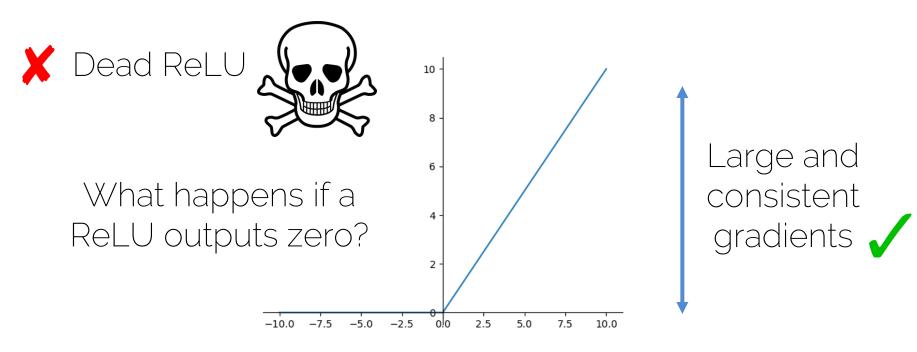
 \boldsymbol{s} : score of the class

- 1. Exponential operation: make sure probability>0
- 2. Normalization: make sure probabilities sum up to 1.

Sigmoid Activation



Rectified Linear Units (ReLU)



[Krizhevsky et al. NeurIPS 2012] ImageNet Classification with Deep Convolutional Neural Networks

Xavier/Kaiming Initialization

 How to ensure the variance of the output is the same as the input?

$$(nVar(w)Var(x)) = 1$$

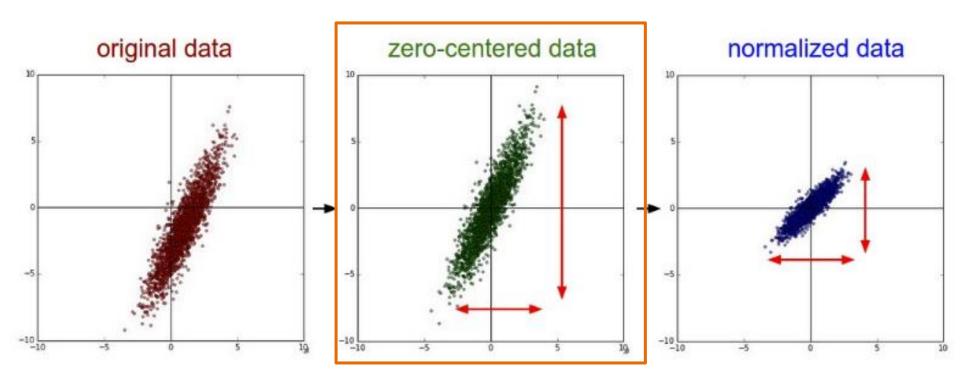
$$Var(w) = \frac{1}{n}$$

ReLU Kills half of the activations -> adjust var by a factor of 2

$$Var(w) = \frac{2}{n}$$

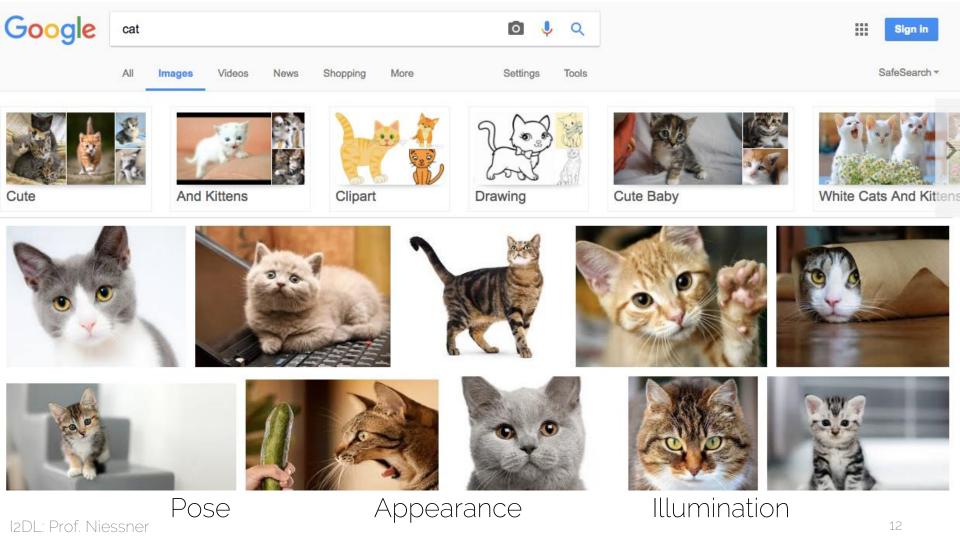
Lecture 8

Data Pre-Processing



For images subtract the mean image (AlexNet) or per-channel mean (VGG-Net)

 A classifier has to be invariant to a wide variety of transformations



 A classifier has to be invariant to a wide variety of transformations

 Helping the classifier: synthesize data simulating plausible transformations

a. No augmentation (= 1 image)

b. Flip augmentation (= 2 Images)

224x224

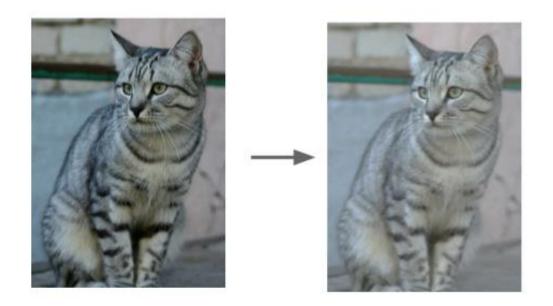
c. Crop+Flip augmentation (= 10 images)

224x224

+ flips

Data Augmentation: Brightness

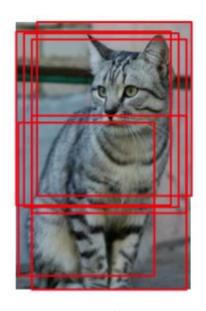
Random brightness and contrast changes



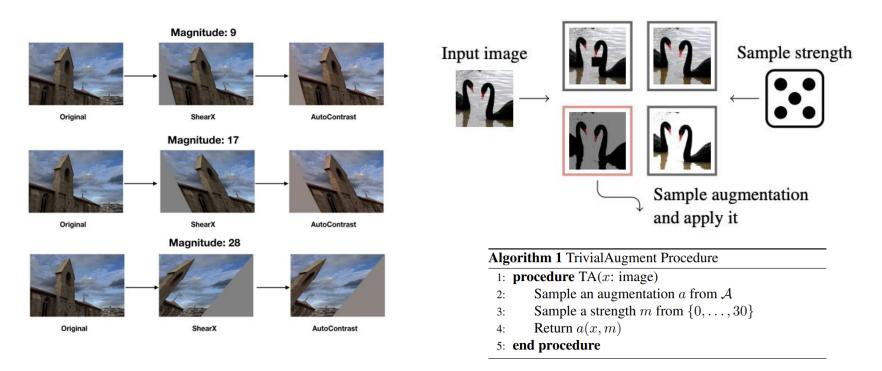
Data Augmentation: Random Crops

- Training: random crops
 - Pick a random L in [256,480]
 - Resize training image, short side L
 - Randomly sample crops of 224x224

- Testing: fixed set of crops
 - Resize image at N scales
 - 10 fixed crops of 224x224: (4 corners + 1 center) × 2 flips



Data Augmentation: Advanced



Cubuk et al., RandAugment, CVPRW 2020

Muller et al., Trivial Augment, ICCV 2021

 When comparing two networks make sure to use the same data augmentation!

Consider data augmentation a part of your network design

Augmentation - Practical Considerations

Augmentations should not distort the labels (e.g., '6' vs '9')

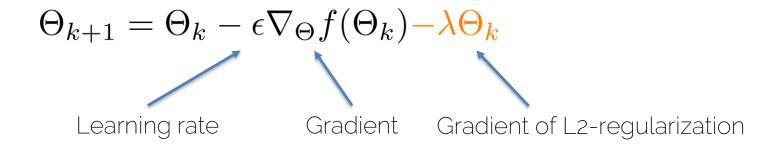
Memory vs speed: on-the-fly vs pre-computed

 Test-time augmentation: generated multiple augmentations of an input image and aggregate model predictions (more robustness)

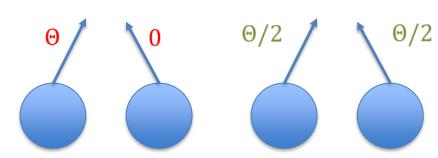
Advanced Regularization

L2 regularization, also (wrongly) called weight decay

L2 regularization



- Penalizes large weights
- Improves generalization



L2 regularization, also (wrongly) called weight decay

Weight decay regularization

$$\Theta_{k+1} = (1 - \lambda)\Theta_k - \alpha \nabla_{\Theta} f(\Theta_k)$$

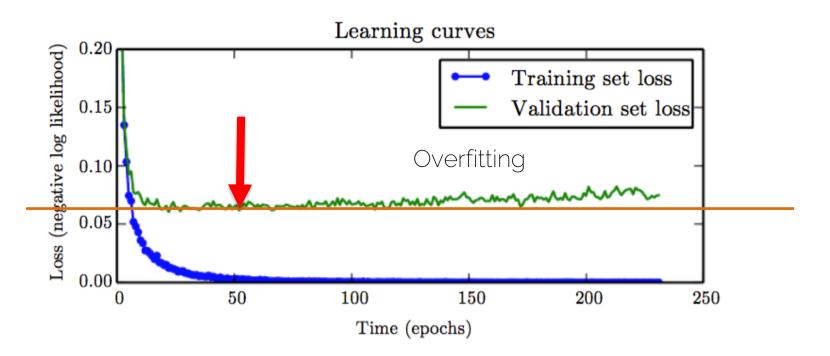
Learning rate of weight decay

Learning rate of the optimizer

• Equivalent to L2 regularization in GD, but not in Adam.

Loshchilov and Hutter, Decoupled Weight Decay Regularization, ICLR 2019

Early Stopping



Bagging and Ensemble Methods

Train multiple models and average their results

 E.g., use a different algorithm for optimization or change the objective function / loss function.

• If errors are uncorrelated, the expected combined error will decrease linearly with the ensemble size

24 land the second state of the second state o

Bagging and Ensemble Methods

Bagging: uses k different datasets (or SGD/init noise)

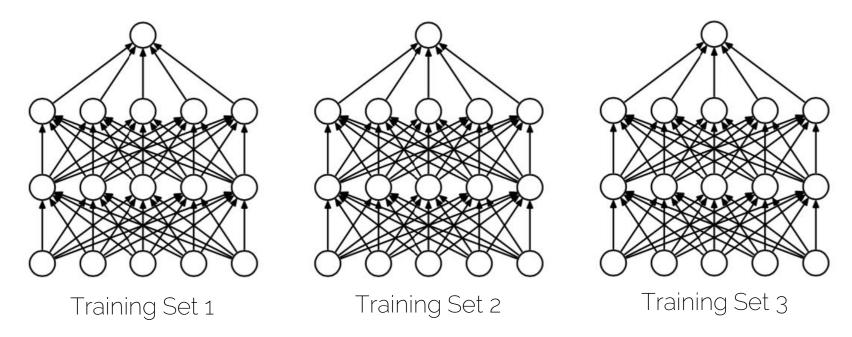


Image Source: [Srivastava et al., JMLR'14] Dropout

Ensembling Variants

Avoid training multiple different models

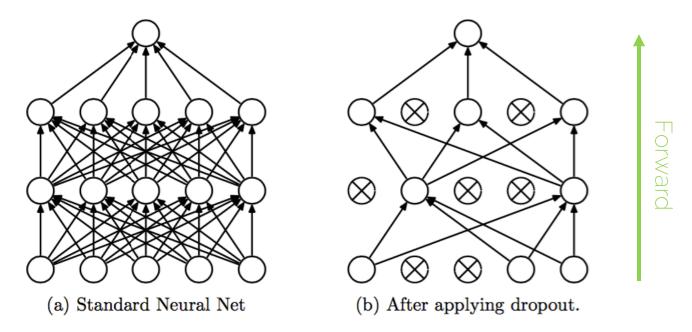
Different checkpoints as ensemble members

- Ensemble via subnetworks
 - Train one big network that acts as an ensemble
 - E.g., multiple inputs -> multiple outputs (MIMO)
 - Single shared network that acts as ensemble (different inputs)

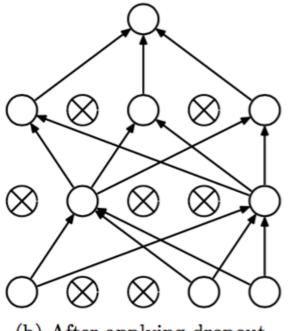
Dropout

Dropout

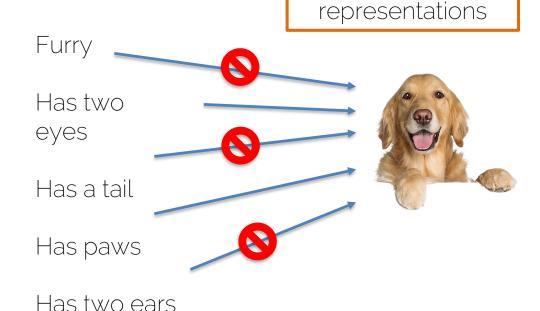
Disable a random set of neurons (typically 50%)



Using half the network = half capacity



(b) After applying dropout.

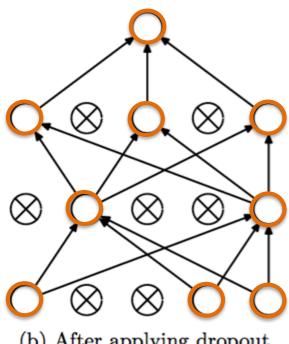


Redundant

- Using half the network = half capacity
 - Redundant representations
 - Base your scores on more features

Consider it as a model ensemble

Two models in one



(b) After applying dropout.

Model 2

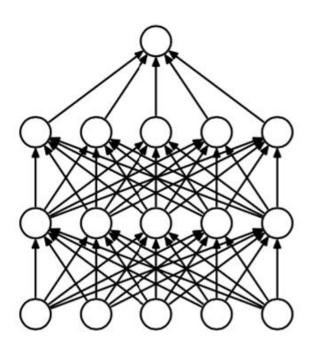
- Using half the network = half capacity
 - Redundant representations
 - Base your scores on more features

- Consider it as two models in one
 - Training a large ensemble of models, each on different set of data (mini-batch) and with SHARED parameters

Reducing co-adaptation between neurons

Dropout: Test Time

• All neurons are "turned on" - no dropout



Conditions at train and test time are not the same

PyTorch: model.train() and model.eval()

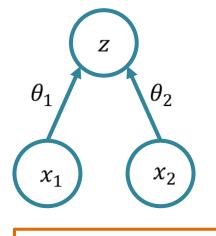
Dropout: Test Time

Dropout probability

Test:

 $z = (\theta_1 x_1 + \theta_2 x_2) \cdot p$

• Train:



Weight scaling inference rule

$$E[z] = \frac{1}{4}(\theta_1 0 + \theta_2 0)$$

$$+ \theta_1 x_1 + \theta_2 0$$

$$+ \theta_1 0 + \theta_2 x_2$$

$$+ \theta_1 x_1 + \theta_2 x_2)$$

$$= \frac{1}{2}(\theta_1 x_1 + \theta_2 x_2)$$

Dropout: Before

Efficient bagging method with parameter sharing

• Try it!

 Dropout reduces the effective capacity of a model, but needs more training time

• Efficient regularization method, can be used with L2

Dropout: Nowadays

- Usually does not work well when combined with batch-norm.
- Training takes a bit longer, usually 1.5x
- But, can be used for uncertainty estimation.
- Monte Carlo dropout (Yarin Gal and Zoubin Ghahramani series of papers).

Monte Carlo Dropout

- Neural networks are massively overconfident.
- We can use dropout to make the softmax probabilities more calibrated.
- Training: use dropout with a low p (0.1 or 0.2).
- Inference, run the same image multiple times (25-100), and average the results.

Gal et al., Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference, ICLRW 2015 Gal and Ghahramani, Dropout as a Bayesian approximation, ICML 2016 Gal et al., Deep Bayesian Active Learning with Image Data, ICML 2017 Gal, Uncertainty in Deep Learning, PhD thesis 2017

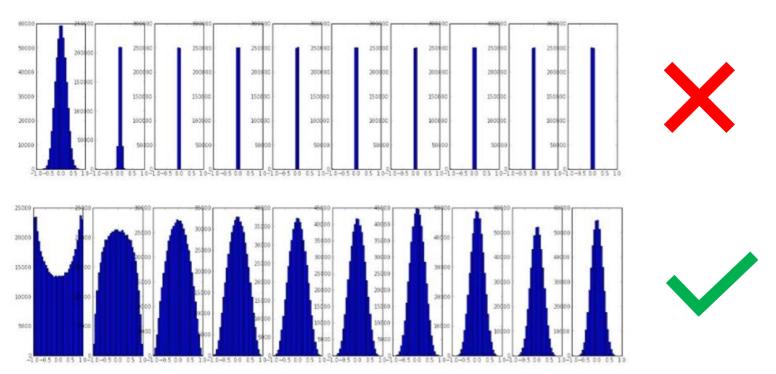
Batch Normalization: Reducing Internal Covariate Shift

Batch Normalization: Reducing Internal Covariate Shift

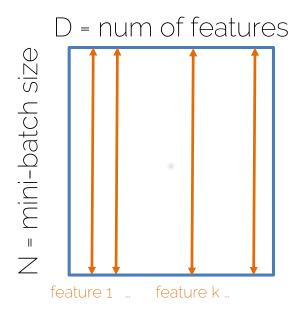
What is internal covariate shift, by the way?

Our Goal

All we want is that our activations do not die out



- Wish: Unit Gaussian activations (in our example)
- Solution: let's do it

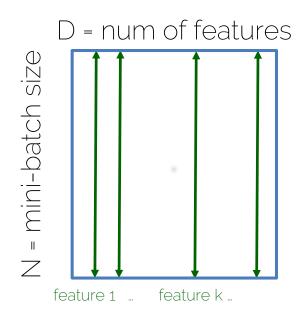


Mean of your mini-batch examples over feature k

$$\widehat{\boldsymbol{x}}^{(k)} = \frac{\boldsymbol{x}^{(k)} - E[\boldsymbol{x}^{(k)}]}{\sqrt{Var[\boldsymbol{x}^{(k)}]}}$$

[loffe and Szegedy, PMLR'15] Batch Normalization

 In each dimension of the features, you have a unit gaussian (in our example)



Mean of your mini-batch examples over feature k $\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{Var[x^{(k)}]}}$

Unit Gaussian

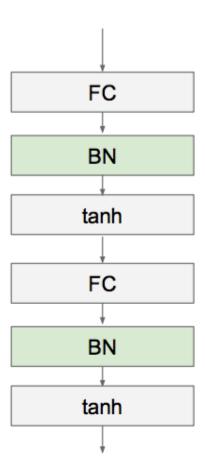
[loffe and Szegedy, PMLR'15] Batch Normalization

 In each dimension of the features, you have a unit gaussian (in our example)

 For NN in general, BN normalizes the mean and variance of the inputs to your activation functions

BN Layer

 A layer to be applied after Fully Connected (or Convolutional) layers and before non-linear activation functions



[loffe and Szegedy, PMLR'15] Batch Normalization

1. Normalize

$$\widehat{\boldsymbol{x}}^{(k)} = \frac{\boldsymbol{x}^{(k)} - E[\boldsymbol{x}^{(k)}]}{\sqrt{Var[\boldsymbol{x}^{(k)}]}}$$
 Differentiable function so we can backprop through it....

2. Allow the network to change the range

$$y^{(k)} = \gamma^{(k)} \widehat{x}^{(k)} + \beta^{(k)}$$
 These parameters will be optimized during backprop

• 1. Normalize

$$\widehat{\boldsymbol{x}}^{(k)} = \frac{\boldsymbol{x}^{(k)} - E[\boldsymbol{x}^{(k)}]}{\sqrt{Var[\boldsymbol{x}^{(k)}]}}$$

• 2. Allow the network to change the range

The network can learn to undo the normalization

$$\gamma^{(k)} = \sqrt{Var[\mathbf{x}^{(k)}]}$$
$$\beta^{(k)} = E[\mathbf{x}^{(k)}]$$

$$y^{(k)} = \widehat{x}^{(k)} + \widehat{\beta}^{(k)}$$
backprop

[loffe and Szegedy, PMLR'15] Batch Normalization

Ok to treat dimensions separately?
 Shown empirically that even if features are not correlated, convergence is still faster with this method

BN: Train vs Test

 Train time: mean and variance is taken over the minibatch

$$\widehat{\boldsymbol{x}}^{(k)} = \frac{\boldsymbol{x}^{(k)} - E[\boldsymbol{x}^{(k)}]}{\sqrt{Var[\boldsymbol{x}^{(k)}]}}$$

- Test-time: what happens if we can just process one image at a time?
 - No chance to compute a meaningful mean and variance

BN: Train vs Test

Training: Compute mean and variance from mini-batch 1,2,3

Testing: Compute mean and variance by running an exponentially weighted averaged across training minibatches:

$$Var_{running} = \beta_m * Var_{running} + (1 - \beta_m) * Var_{minibatch}$$

$$\mu_{running} = \beta_m * \mu_{running} + (1 - \beta_m) * \mu_{minibatch}$$

 β_m : momentum (hyperparameter)

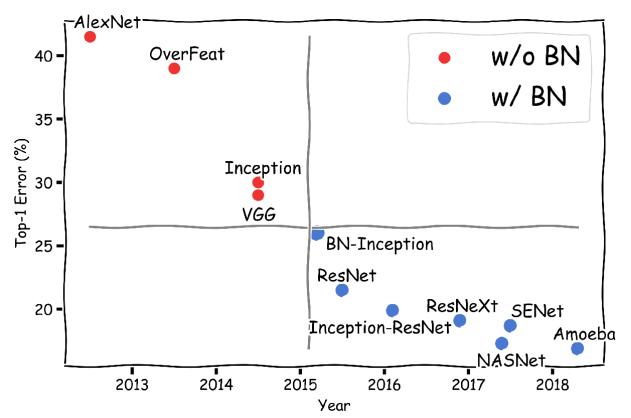
[loffe and Szegedy, PMLR'15] Batch Normalization

BN: What do you get?

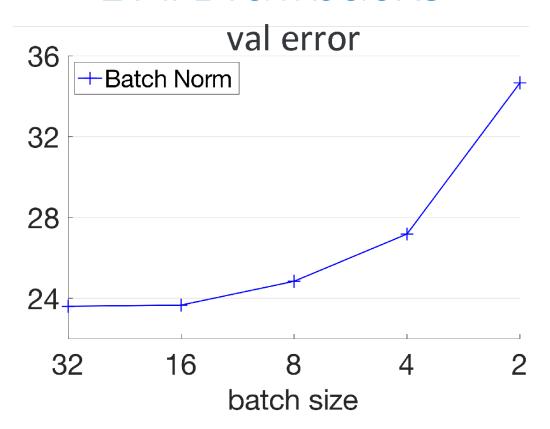
Very deep nets are much easier to train, more stable gradients

 A much larger range of hyperparameters works similarly when using BN

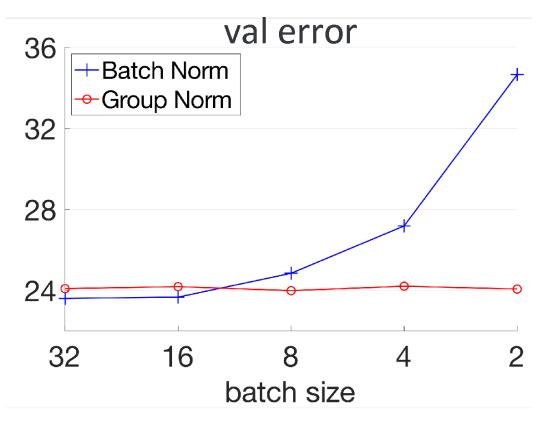
BN: A Milestone



BN: Drawbacks

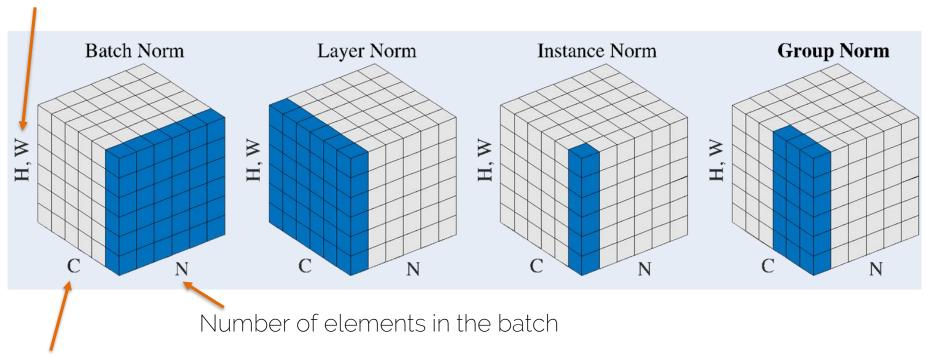


Other Normalizations



Other Normalizations

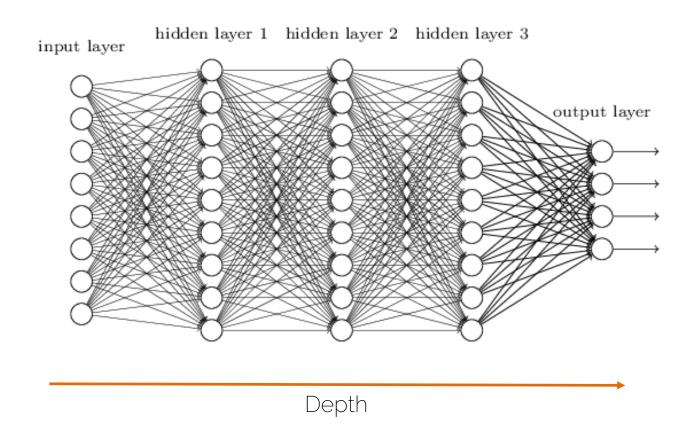
Image size



Number of channels

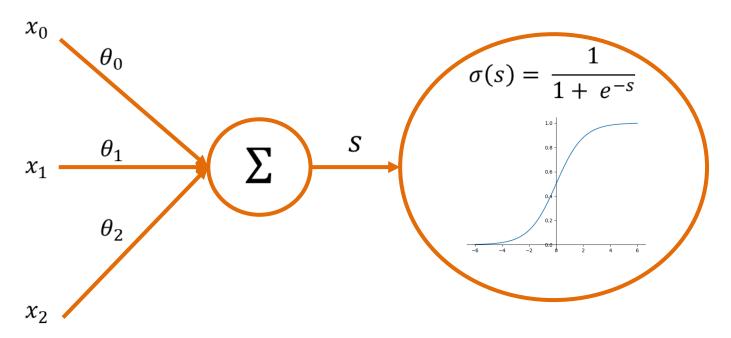
[Wu and He, ECCV'18] Group Normalization

What We Know



Width

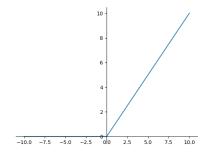
Concept of a 'Neuron'



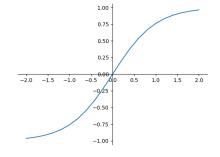
Activation Functions (non-linearities)

• Sigmoid:
$$\sigma(x) = \frac{1}{(1+e^{-x})^{\frac{0.8}{0.6}}}$$

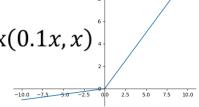
• ReLU: max(0,x)

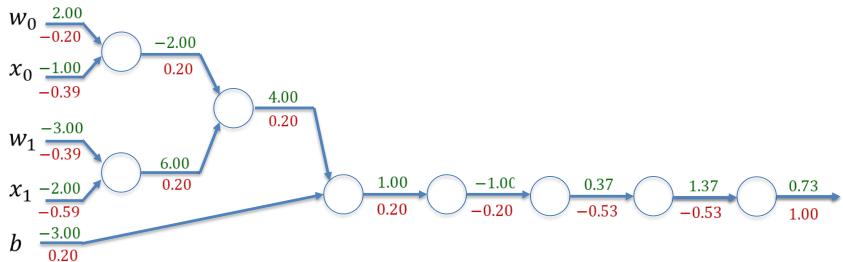


• TanH: tanh(x)

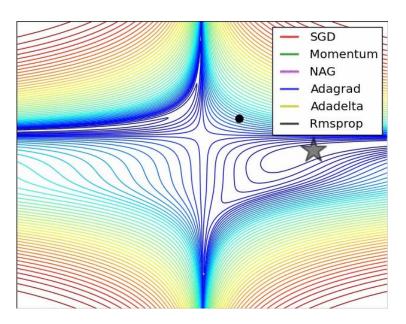


Leaky ReLU: $\max(0.1x, x)$.





SGD Variations (Momentum, etc.)



Data Augmentation

a. No augmentation (= 1 image)

b. Flip augmentation (= 2 images)

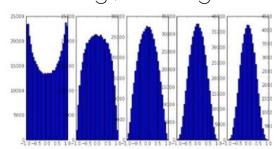
Weight Regularization

e.g.,
$$L^2$$
-reg: $R^2(\mathbf{W}) = \sum_{i=1}^N w_i^2$

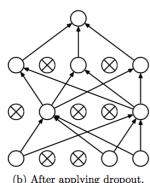
Batch-Norm

$$\widehat{\boldsymbol{x}}^{(k)} = \frac{\boldsymbol{x}^{(k)} - E[\boldsymbol{x}^{(k)}]}{\sqrt{Var[\boldsymbol{x}^{(k)}]}}$$

Weight Initialization (e.g., Kaiming)



Dropout



(b) After applying dropout.

Why not simply more layers?

- Neural nets with at least one hidden layer are universal function approximators.
- But generalization is another issue.
- Why not just go deeper and get better?
 - No structure!!
 - It is just brute force!
 - Optimization becomes hard
 - Performance plateaus / drops!

We need more! More means CNNs, RNNs, and Transformers.

Useful References (Recently Released)

- Foundations of Computer Vision (2024; Torralba, Isola, Freeman)
 - Foundational concepts of computer vision with a machine learning perspective
 - Free online at: https://visionbook.mit.edu/

References

- Goodfellow et al. "Deep Learning" (2016),
 - Chapter 6: Deep Feedforward Networks
- Bishop "Pattern Recognition and Machine Learning" (2006),
 - Chapter 5.5: Regularization in Network Nets
- http://cs231n.github.io/neural-networks-1/
- http://cs231n.github.io/neural-networks-2/
- http://cs231n.github.io/neural-networks-3/

See you next week!