Scaling Optimization

ता

Lecture 4 Recap

Neural Network

hidden layer
Source: http://cs231n.github.io/neural-networks-1/

Neural Network

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

Compute Graphs \rightarrow Neural Networks

Compute Graphs \rightarrow Neural Networks

We want to compute gradients w.r.t. all weights \boldsymbol{W}

Compute Graphs \rightarrow Neural Networks

Activation bias function

Goal: We want to compute gradients of the loss function L w.r.t. all weights w

$$
L=\sum_{i} L_{i}
$$

L: sum over loss per sample, e.g.
L2 loss \rightarrow simply sum up squares:

$$
L_{i}=\left(\hat{y}_{i}-y_{i}\right)^{2}
$$

\rightarrow use chain rule to compute partials

$$
\frac{\partial L}{\partial w_{i, k}}=\frac{\partial L}{\partial \hat{y}_{i}} \cdot \frac{\partial \hat{y}_{i}}{\partial w_{i, k}}
$$

We want to compute gradients w.r.t. all weights \boldsymbol{W} AND all biases b

Summary

- We have
- (Directional) compute graph
- Structure graph into layers
- Compute partial derivatives w.r.t. weights (unknowns)

$$
\nabla_{\boldsymbol{W}} f_{\{x, y\}}(\boldsymbol{W})=\left[\begin{array}{c}
\frac{\partial f}{\partial w_{0,0,0}} \\
\cdots \\
\dddot{\partial f} \\
\frac{\partial w_{l, m, n}}{\cdots} \\
\cdots \\
\frac{\partial f}{\partial b_{l, m}}
\end{array}\right]
$$

- Next
- Find weights based on gradients

Optimization

Gradient Descent

$$
x^{*}=\arg \min f(x)
$$

Gradient Descent

$$
x^{*}=\arg \min f(x)
$$

Gradient Descent

- From derivative to gradient

- Gradient steps in direction of negative gradient

$$
x^{\prime}=x-\alpha \nabla_{x} f(x)
$$

Learning rate

Gradient Descent

- From derivative to gradient

- Gradient steps in direction of negative gradient

$$
x^{\prime}=x-\alpha \nabla_{x} f(x)
$$

SMALL Learning rate

Gradient Descent

- From derivative to gradient

- Gradient steps in direction of negative gradient

$$
x^{\prime}=x-\alpha \nabla_{x} f(x)
$$

LARGE Learning rate

Gradient Descent

$$
\boldsymbol{x}^{*}=\arg \min f(\boldsymbol{x})
$$

Convergence of Gradient Descent

- Convex function: all local minima are global minima

Source: https:/ /en.wikipedia.org/wiki/Convex_function\#/media/File:ConvexFunction.svg
If line/plane segment between any two points lies above or on the graph

Convergence of Gradient Descent

- Neural networks are non-convex
- many (different) local minima
- no (practical) way to say which is globally optimal

Source: Li, Qi. (2006). Challenging Registration of Geologic Image Data

Convergence of Gradient Descent

Small learning rate

Source: https: / /builtin.com/data-science/gradient-
descent

Convergence of Gradient Descent

 Cost

Gradient Descent: Multiple Dimensions

Source: $\underline{\text { builtin.com/data-science/gradient-descent }}$
Various ways to visualize...

Gradient Descent: Multiple Dimensions

Source: http://blog.datumbox.com/wp-content/uploads/2013/10/gradientdescent.png

Gradient Descent for Neural Networks

Loss function

$\nabla_{W, b} f_{\{x, y\}}(\boldsymbol{W})=\left[\begin{array}{c}\frac{\partial f}{\partial w_{0,0,0}} \\ \cdots \\ \frac{\partial f}{\partial w_{l, m, n}} \\ \cdots \cdots \\ \frac{\partial f}{\partial b_{l, m}}\end{array}\right]$
input layer
hidden layer
Ł $\hat{y}_{i}=A\left(b_{1, i}+\sum_{j} h_{j} w_{1, i, j}\right)$

$$
h_{j}=A\left(b_{0, j}+\sum_{k} x_{k} w_{0, j, k}\right) \quad \begin{array}{ll}
\text { Just simple: } \\
& A(x)=\max (0, x)
\end{array}
$$

Gradient Descent: Single Training Sample

- Given a loss function L and a single training sample $\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\}$
- Find best model parameters $\boldsymbol{\theta}=\{\boldsymbol{W}, \boldsymbol{b}\}$
- Cost $L_{i}\left(\boldsymbol{\theta}, \boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right)$
- $\boldsymbol{\theta}=\arg \min L_{i}\left(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right)$
- Gradient Descent:
- Initialize $\boldsymbol{\theta}^{1}$ with 'random' values (more on that later)
$-\boldsymbol{\theta}^{k+1}=\boldsymbol{\theta}^{k}-\alpha \nabla_{\boldsymbol{\theta}} L_{i}\left(\boldsymbol{\theta}^{k}, \boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right)$
- Iterate until convergence: $\left|\boldsymbol{\theta}^{k+1}-\boldsymbol{\theta}^{k}\right|<\epsilon$

Gradient Descent: Single Training Sample

- $\boldsymbol{\theta}^{k+1}=\boldsymbol{\theta}^{k}-\alpha \nabla_{\boldsymbol{\theta}} L_{i}\left(\boldsymbol{\theta}^{k}, \boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right)$

Weights, biases after update step
Weights, biases at step k
(current model)

- $\nabla_{\boldsymbol{\theta}} L_{i}\left(\boldsymbol{\theta}^{k}, \boldsymbol{x}_{i}, \boldsymbol{y}_{\boldsymbol{i}}\right)$ computed via backpropagation
- Typically: $\operatorname{dim}\left(\nabla_{\boldsymbol{\theta}} L_{i}\left(\boldsymbol{\theta}^{k}, \boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right)\right)=\operatorname{dim}(\boldsymbol{\theta}) \gg 1$ million

Gradient Descent: Multiple Training Samples

- Given a loss function L and multiple (n) training samples $\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\}$
- Find best model parameters $\boldsymbol{\theta}=\{\boldsymbol{W}, \boldsymbol{b}\}$
- Cost $L=\frac{1}{n} \sum_{i=1}^{n} L_{i}\left(\boldsymbol{\theta}, \boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right)$
- $\boldsymbol{\theta}=\arg \min L$

Gradient Descent: Multiple Training Samples

- Update step for multiple samples

$$
\boldsymbol{\theta}^{k+1}=\boldsymbol{\theta}^{k}-\alpha \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}^{k}, \boldsymbol{x}_{\{1 . n\}}, \boldsymbol{y}_{\{1 . n\}}\right)
$$

- Gradient is average / sum over residuals

$$
\nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}^{k}, \boldsymbol{x}_{\{1 . . n\}}, \boldsymbol{y}_{\{1 . . n\}}\right)=\frac{1}{n} \sum_{i=1}^{n} \underbrace{\nabla_{\boldsymbol{\theta}} L_{i}\left(\boldsymbol{\theta}^{k}, \boldsymbol{x}_{i}, \boldsymbol{y}_{\boldsymbol{i}}\right)}_{\text {Reminder: this comes from backprop. }}
$$

- Often people are lazy and just write: $\nabla L=\sum_{i=1}^{n} \nabla_{\boldsymbol{\theta}} L_{i}$
- omitting $\frac{1}{n}$ is not 'wrong', it just means rescaling the learning rate

Side Note: Optimal Learning Rate

Can compute optimal learning rate α using Line Search (optimal for a given set)

1. Compute gradient: $\nabla_{\boldsymbol{\theta}} L=\frac{1}{n} \sum_{i=1}^{n} \nabla_{\boldsymbol{\theta}} L_{i}$
2. Optimize for optimal step α :

3. $\boldsymbol{\theta}^{k+1}=\boldsymbol{\theta}^{k}-\alpha \nabla_{\boldsymbol{\theta}} L \quad \begin{aligned} & \text { Not that practical for DL since we } \\ & \text { need to solve huge system every step... }\end{aligned}$

Gradient Descent on Train Set

- Given large train set with n training samples $\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\}$
- Let's say 1 million labeled images
- Let's say our network has 500k parameters
- Gradient has 500k dimensions
- $n=1$ million
\rightarrow Extremely expensive to compute

Stochastic Gradient Descent (SGD)

- If we have n training samples, we need to compute the gradient for all of them which is $O(n)$
- If we consider the problem as empirical risk minimization, we can express the total loss over the training data as the expectation of all the samples

$$
\frac{1}{n}\left(\sum_{i=1}^{n} L_{i}\left(\boldsymbol{\theta}, \boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{y}_{\boldsymbol{i}}\right)\right)=\mathbb{E}_{i \sim[1, \ldots, n]}\left[L_{i}\left(\boldsymbol{\theta}, \boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{y}_{i}\right)\right]
$$

Stochastic Gradient Descent (SGD)

- The expectation can be approximated with a small subset of the data

$$
\mathbb{E}_{i \sim[1, \ldots, n]}\left[L_{i}\left(\boldsymbol{\theta}, \boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{y}_{\boldsymbol{i}}\right)\right] \approx \frac{1}{|S|} \sum_{j \in S}\left(L_{j}\left(\boldsymbol{\theta}, \boldsymbol{x}_{j}, \boldsymbol{y}_{j}\right)\right) \text { with } \mathrm{S} \subseteq\{1, \ldots, n\}
$$

$$
\begin{gathered}
\text { Minibatch } \\
\text { choose subset of trainset } m \ll n \\
B_{i}=\left\{\left\{\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{y}_{1}\right\},\left\{\boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right\}, \ldots,\left\{\boldsymbol{x}_{\boldsymbol{m}}, \boldsymbol{y}_{\boldsymbol{m}}\right\}\right\} \\
\left\{B_{1}, B_{2}, \ldots, B_{n / m}\right\}
\end{gathered}
$$

Stochastic Gradient Descent (SGD)

- Minibatch size is hyperparameter
- Typically power of $2 \rightarrow 8,16,32,64,128$...
- Smaller batch size means greater variance in the gradients
\rightarrow noisy updates
- Mostly limited by GPU memory (in backward pass)
- E.g.,
- Train set has $\mathrm{n}=2^{20}$ (about 1 million) images
- With batch size $\mathrm{m}=64: B_{1} \ldots n / m=B_{1} \ldots 16,384$ minibatches
(Epoch = complete pass through training set)

Stochastic Gradient Descent (SGD)

$$
\nabla_{\boldsymbol{\theta}} L=\frac{1}{m} \sum_{i=1}^{m} \nabla_{\boldsymbol{\theta}} L_{i}
$$

Gradient for the \boldsymbol{k}-th minibatch
Note the terminology: iteration vs epoch

Convergence of SGD

Suppose we want to minimize the function $F(\theta)$ with the stochastic approximation

$$
\theta^{k+1}=\theta^{k}-\alpha_{k} H\left(\theta^{k}, X\right)
$$

where $\alpha_{1}, \alpha_{2} \ldots \alpha_{n}$ is a sequence of positive step-sizes and $H\left(\theta^{k}, X\right)$ is the unbiased estimate of $\nabla \mathrm{F}\left(\theta^{k}\right)$, i.e.

$$
\mathbb{E}\left[H\left(\theta^{k}, X\right)\right]=\nabla \mathcal{F}\left(\theta^{k}\right)
$$

Convergence of SGD

$$
\theta^{k+1}=\theta^{k}-\alpha_{k} H\left(\theta^{k}, X\right)
$$

converges to a local (global) minimum if the following conditions are met:

1) $\alpha_{n} \geq 0, \forall n \geq 0$
2) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$
3) $\sum_{n=1}^{\infty} \alpha_{n}^{2}<\infty$
4) $F(\theta)$ is strictly convex

The proposed sequence by Robbins and Monro is $\alpha_{n} \propto \frac{\alpha}{n}$, for $n>0$

Problems of SGD

- Gradient is scaled equally across all dimensions
\rightarrow i.e., cannot independently scale directions
\rightarrow need to have conservative min learning rate to avoid divergence
\rightarrow Slower than 'necessary'
- Finding good learning rate is an art by itself
\rightarrow More next lecture

Gradient Descent with Momentum

We're making many steps back and forth along this dimension. Would love to track that this is averaging out over time.

Would love to go faster here...
I.e., accumulated gradients over
time

Gradient Descent with Momentum

accumulation rate ('friction', momentum)

$$
\boldsymbol{\theta}^{k+1}=\boldsymbol{\theta}^{k}+\boldsymbol{v}^{k+1}
$$

velocity
weights of model

Exponentially-weighted average of gradient
Important: velocity \boldsymbol{v}^{k} is vector-valued!

Gradient Descent with Momentum

Step will be largest when a sequence of gradients all point to the same direction

Hyperparameters are α, β β is often set to 0.9

$$
\boldsymbol{\theta}^{k+1}=\boldsymbol{\theta}^{k}+\boldsymbol{v}^{k+1}
$$

Gradient Descent with Momentum

- Can it overcome local minima?

Nesterov Momentum

- Look-ahead momentum

$$
\begin{gathered}
\widetilde{\boldsymbol{\theta}}^{k+1}=\boldsymbol{\theta}^{k}+\beta \cdot \boldsymbol{v}^{k} \\
\boldsymbol{v}^{k+1}=\beta \cdot \boldsymbol{v}^{k}-\alpha \cdot \nabla_{\boldsymbol{\theta}} L\left(\widetilde{\boldsymbol{\theta}}^{k+1}\right) \\
\boldsymbol{\theta}^{k+1}=\boldsymbol{\theta}^{k}+\boldsymbol{v}^{k+1}
\end{gathered}
$$

Nesterov Momentum

- First make a big jump in the direction of the previous accumulated gradient.
- Then measure the gradient where you end up and make a correction.

brown vector $=$ jump, \quad red vector $=$ correction, \quad green vector $=$ accumulated gradient
blue vectors $=$ standard momentum

$$
\begin{gathered}
\widetilde{\boldsymbol{\theta}}^{k+1}=\boldsymbol{\theta}^{k}+\beta \cdot \boldsymbol{v}^{k} \\
\boldsymbol{v}^{k+1}=\beta \cdot \boldsymbol{v}^{k}-\alpha \cdot \nabla_{\boldsymbol{\theta}} L\left(\widetilde{\boldsymbol{\theta}}^{k+1}\right) \\
\boldsymbol{\theta}^{k+1}=\boldsymbol{\theta}^{k}+\boldsymbol{v}^{k+1}
\end{gathered}
$$

Root Mean Squared Prop (RMSProp)

- RMSProp divides the learning rate by an exponentially-decaying average of squared gradients.

RMSProp

$$
\begin{aligned}
& \boldsymbol{s}^{k+1}=\beta \cdot \boldsymbol{s}^{k}+(1-\beta)\left[\bar{\nabla}_{\boldsymbol{\theta}} \underline{\left.D_{\boldsymbol{\theta}} L\right]}\right] \\
& \boldsymbol{\theta}^{k+1}=\boldsymbol{\theta}^{k}-\alpha \cdot \frac{\nabla_{\boldsymbol{\theta}} L}{\sqrt{\boldsymbol{s}^{k+1}}+\epsilon}
\end{aligned}
$$

Hyperparameters: α, β, ϵ
Typically 10^{-8}

Needs tuning!

Often 0.9

RMSProp

(Uncentered) variance of gradients
\rightarrow second momentum

$$
\boldsymbol{\theta}^{k+1}=\boldsymbol{\theta}^{k}-\alpha \cdot \frac{\nabla_{\boldsymbol{\theta}} L}{\sqrt{\boldsymbol{s}^{k+1}}+\epsilon}
$$

Can increase learning rate!

RMSProp

- Dampening the oscillations for high-variance directions
- Can use faster learning rate because it is less likely to diverge
\rightarrow Speed up learning speed
\rightarrow Second moment

Adaptive Moment Estimation (Adam)

Idea : Combine Momentum and RMSProp

$$
\begin{aligned}
& \boldsymbol{m}^{k+1}=\beta_{1} \cdot \boldsymbol{m}^{k}+\left(1-\beta_{1}\right) \nabla_{\theta} L\left(\boldsymbol{\theta}^{k}\right) \longleftarrow \\
& v^{k+1}=\beta_{2} \cdot v^{k}+\left(1-\beta_{2}\right)\left[\nabla_{\theta} L\left(\theta^{k}\right) \circ \nabla_{\theta} L\left(\theta^{k}\right)\right]
\end{aligned}
$$

$$
\boldsymbol{\theta}^{k+1}=\boldsymbol{\theta}^{k}-\alpha \cdot \frac{m^{k+1}}{\sqrt{v^{k+1}}+\epsilon}
$$

Note : This is not the update rule of Adam
Q. What happens at $k=0$?
A. We need bias correction as $\boldsymbol{m}^{0}=0$ and $\boldsymbol{v}^{0}=0$

Adam : Bias Corrected

- Combines Momentum and RMSProp

$$
\boldsymbol{m}^{k+1}=\beta_{1} \cdot \boldsymbol{m}^{k}+\left(1-\beta_{1}\right) \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}^{k}\right) \quad \boldsymbol{v}^{k+1}=\beta_{2} \cdot \boldsymbol{v}^{k}+\left(1-\beta_{2}\right)\left[\nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}^{k}\right) \circ \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}^{k}\right)\right.
$$

- \boldsymbol{m}^{k} and \boldsymbol{v}^{k} are initialized with zero
\rightarrow bias towards zero
\rightarrow Need bias-corrected moment updates
Update rule of Adam

$$
\widehat{\boldsymbol{m}}^{k+1}=\frac{\boldsymbol{m}^{k+1}}{1-\beta_{1}^{k+1}} \quad \widehat{\boldsymbol{v}}^{k+1}=\frac{\boldsymbol{v}^{k+1}}{1-\beta_{2}^{k+1}} \quad \longrightarrow \boldsymbol{\theta}^{k+1}=\boldsymbol{\theta}^{k}-\alpha \cdot \frac{\widehat{\boldsymbol{m}}^{k+1}}{\sqrt{\widehat{\boldsymbol{v}}^{k+1}+\epsilon}}
$$

Adam

- Exponentially-decaying mean and variance of gradients (combines first and second order momentum)
- Hyperparameters: $\alpha, \beta_{1}, \beta_{2}, \epsilon$

There are a few others...

- 'Vanilla' SGD
- Momentum
- RMSProp
- Adagrad
- Adadelta
- AdaMax
- Nada
- AMSGrad

Adam is mostly method
of choice for neural networks!

Convergence

Source: http://ruder.io/optimizing-gradient-descent/

Convergence

Source: http:/ /ruder.io/optimizing-gradient-descent/

Convergence

Source: https:/ / github.com/ Jaewan-Yun/optimizer-visualization

Jacobian and Hessian

- Derivative
$f: \mathbb{R} \rightarrow \mathbb{R} \quad \frac{d f(x)}{d x}$
- Gradient
$f: \mathbb{R}^{m} \rightarrow \mathbb{R}$

$$
\nabla_{x} f(x) \quad\left(\frac{\mathrm{d} f(\boldsymbol{x})}{\mathrm{d} x_{1}}, \frac{\mathrm{~d} f(\boldsymbol{x})}{\mathrm{d} x_{2}}\right)
$$

- Jacobian
$f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$
$\mathbf{J} \in \mathbb{R}^{n \times m}$
- Hessian
$\mathbf{H} \in \mathbb{R}^{m \times m}$
SECOND

DERIVATIVE

Newton's Method

- Approximate our function by a second-order Taylor series expansion

$$
\begin{aligned}
& L(\boldsymbol{\theta}) \approx L\left(\boldsymbol{\theta}_{0}\right)+\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{T} \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{0}\right)+\frac{1}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{T} \mathbf{H}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right) \\
& \text { First derivative } \\
& \text { Second derivative (curvature) }
\end{aligned}
$$

Newton's Method

- Differentiate and equate to zero

We got rid of the learning rate!

SGD

$$
\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\alpha \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}_{\boldsymbol{i}}, \mathbf{y}_{\boldsymbol{i}}\right)
$$

Newton's Method

- Differentiate and equate to zero

$$
\boldsymbol{\theta}^{*}=\boldsymbol{\theta}_{0}-\mathbf{H}^{-1} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) \text { Update step }
$$

Parameters of a network (millions)
k

Number of
elements in the Hessian
k^{2}

Computational complexity of 'inversion' per iteration
$\mathcal{O}\left(k^{3}\right)$

Newton's Method

- Gradient Descent (green)
- Newton's method exploits the curvature to take a more direct route

Newton's Method

$$
J(\boldsymbol{\theta})=(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})^{T}(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})
$$

Can you apply Newton's method for linear regression? What do you get as a result?

BFGS and L-BFGS

- Broyden-Fletcher-Goldfarb-Shanno algorithm
- Belongs to the family of quasi-Newton methods
- Have an approximation of the inverse of the Hessian

$$
\boldsymbol{\theta}^{*}=\boldsymbol{\theta}_{0}-\mathbf{H}^{-1} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})
$$

- BFGS $\mathcal{O}\left(n^{2}\right)$
- Limited memory: L-BFGS $\mathcal{O}(n)$

Gauss-Newton

- $x_{k+1}=x_{k}-H_{f}\left(x_{k}\right)^{-1} \nabla f\left(x_{k}\right)$
- 'true' $2^{\text {nd }}$ derivatives are often hard to obtain (e.g., numerics)
- $H_{f} \approx 2 J_{F}^{T} J_{F}$
- Gauss-Newton (GN):

$$
x_{k+1}=x_{k}-\left[2 J_{F}\left(x_{k}\right)^{T} J_{F}\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)
$$

- Solve linear system (again, inverting a matrix is unstable):

$$
2\left(J_{F}\left(x_{k}\right)^{T} J_{F}\left(x_{k}\right)\right)\left(x_{k}-x_{k+1}\right)=\nabla f\left(x_{k}\right)
$$

Solve for delta vector

Levenberg

- Levenberg
- "damped" version of Gauss-Newton
$-\left(J_{F}\left(x_{k}\right)^{T} J_{F}\left(x_{k}\right)+\lambda \cdot I\right) \cdot\left(x_{k}-x_{k+1}\right)=\nabla f\left(x_{k}\right)$
Tikhonov
regularization
- The damping factor $\boldsymbol{\lambda}$ is adjusted in each iteration ensuring:

$$
f\left(x_{k}\right)>f\left(x_{k+1}\right)
$$

- if the equation is not fulfilled increase $\boldsymbol{\lambda}$
- \rightarrow Trust region
- \rightarrow "Interpolation" between Gauss-Newton (small $\boldsymbol{\lambda}$) and Gradient Descent (large $\boldsymbol{\lambda}$)

Levenberg-Marquardt

- Levenberg-Marquardt (LM)

$$
\begin{aligned}
& \left(J_{F}\left(x_{k}\right)^{T} J_{F}\left(x_{k}\right)+\lambda \cdot \operatorname{diag}\left(J_{F}\left(x_{k}\right)^{T} J_{F}\left(x_{k}\right)\right)\right) \cdot\left(x_{k}-x_{k+1}\right) \\
& =\nabla f\left(x_{k}\right)
\end{aligned}
$$

- Instead of a plain Gradient Descent for large λ, scale each component of the gradient according to the curvature.
- Avoids slow convergence in components with a small gradient

Which, What, and When?

- Standard: Adam
- Fallback option: SGD with momentum
- Newton, L-BFGS, GN, LM only if you can do full batch updates (doesn't work well for minibatches!!)

> This practically never happens for DL
> Theoretically, it would be nice though due to fast
> convergence

General Optimization

- Linear Systems (Ax = b)
- LU, QR, Cholesky, Jacobi, Gauss-Seidel, CG, PCG, etc.
- Non-linear (gradient-based)
- Newton, Gauss-Newton, LM, (L)BFGS
\leftarrow second order
- Gradient Descent, SGD
- Others
- Genetic algorithms, MCMC, Metropolis-Hastings, etc.
- Constrained and convex solvers (Langrage, ADMM, PrimalDual, etc.)

Please Remember!

- Think about your problem and optimization at hand
- SGD is specifically designed for minibatch
- When you can, use $2^{\text {nd }}$ order method \rightarrow it's just faster
- GD or SGD is not a way to solve a linear system!

Next Lecture

- This week:
- Check exercises
- Check office hours -) $^{\text {- }}$
- Next lecture
- Training Neural networks

Tा

See you next week ©

Some References to SGD Updates

- Goodfellow et al. "Deep Learning" (2016),
- Chapter 8: Optimization
- Bishop "Pattern Recognition and Machine Learning" (2006).
- Chapter 5.2: Network training (gradient descent)
- Chapter 5.4: The Hessian Matrix (second order methods)
- https://ruder.io/optimizing-gradient-descent/index.html
- PyTorch Documetation (with further readings)
- https://pytorch.org/docs/stable/optim.html

