Tll

Lecture 2 Recap

Linear Regression

= a supervised learning method to find a linear model of
the form

$$
\hat{y}_{i}=\theta_{0}+\sum_{j=1}^{d} x_{i j} \theta_{j}=\theta_{0}+x_{i 1} \theta_{1}+x_{i 2} \theta_{2}+\cdots+x_{i d} \theta_{d}
$$

Logistic Regression

- Loss function

$$
\mathcal{L}\left(\hat{y}_{i}, y_{i}\right)=-\left[y_{i} \log \hat{y}_{i}+\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)\right]
$$

- Cost function

$$
\mathcal{C}(\boldsymbol{\theta})=-\frac{1}{n} \sum_{i=1}^{n}\left(y_{i} \cdot \log \widehat{y_{i}}+\left(1-y_{i}\right) \cdot \log \left[1-\widehat{y_{i}}\right]\right)
$$

Linear vs Logistic Regression

Predictions can exceed the range of the training samples
\rightarrow in the case of classification
[0;1] this becomes a real issue

Predictions are guaranteed to be within [0;1]

How to obtain the Model?

Linear Score Functions

- Linear score function as seen in linear regression

$$
\begin{aligned}
& \boldsymbol{f}_{\boldsymbol{i}}=\sum_{\boldsymbol{j}} w_{\boldsymbol{i}, \boldsymbol{j}} x_{\boldsymbol{j}} \\
& \boldsymbol{f}=\boldsymbol{W} \boldsymbol{x} \quad \text { (Matrix Notation) }
\end{aligned}
$$

Linear Score Functions on Images

- Linear score function $\boldsymbol{f}=\boldsymbol{W} \boldsymbol{x}$

On CIFAR-10

On ImageNet
Source:. Li/Karpathy / Johnson

Linear Score Functions?

Logistic Regression

Linear Separation Impossible!

Linear Score Functions?

- Can we make linear regression better?
- Multiply with another weight matrix W_{2}

$$
\begin{aligned}
& \hat{\boldsymbol{f}}=W_{2} \cdot \boldsymbol{f} \\
& \hat{\boldsymbol{f}}=W_{2} \cdot W \cdot \boldsymbol{x}
\end{aligned}
$$

- Operation is still linear.

$$
\begin{aligned}
& \widehat{W}=W_{2} \cdot W \\
& \hat{\boldsymbol{f}}=\widehat{W} \boldsymbol{x}
\end{aligned}
$$

- Solution \rightarrow add non-linearity!!

Neural Network

- Linear score function $\boldsymbol{f}=\boldsymbol{W} \boldsymbol{x}$
- Neural network is a nesting of 'functions'
- 2-layers: $\boldsymbol{f}=\boldsymbol{W}_{2} \max \left(\mathbf{0}, \boldsymbol{W}_{1} \boldsymbol{x}\right)$
- 3-layers: $\boldsymbol{f}=W_{3} \max \left(\mathbf{0}, W_{2} \max \left(\mathbf{0}, W_{1} \boldsymbol{x}\right)\right)$
- 4-layers: $\boldsymbol{f}=W_{4} \tanh \left(W_{3}, \max \left(\mathbf{0}, W_{2} \max \left(\mathbf{0}, W_{1} \boldsymbol{x}\right)\right)\right)$
- 5-layers: $\boldsymbol{f}=W_{5} \sigma\left(W_{4} \tanh \left(W_{3}, \max \left(\mathbf{0}, W_{2} \max \left(\mathbf{0}, W_{1} \boldsymbol{x}\right)\right)\right)\right)$
- ... up to hundreds of layers

History of Neural Networks

Neural Network

Logistic Regression

Neural Networks

Neural Network

- Non-linear score function $\boldsymbol{f}=\ldots\left(\max \left(\mathbf{0}, W_{1} \boldsymbol{x}\right)\right)$
 truck

On CIFAR-10

Neural Network

1-layer network: $\boldsymbol{f}=\boldsymbol{W} \boldsymbol{x}$
2-layer network: $\boldsymbol{f}=\boldsymbol{W}_{\mathbf{2}} \max \left(\mathbf{0}, \boldsymbol{W}_{\mathbf{1}} \boldsymbol{x}\right)$

$128 \times 128=16384$
10

Why is this structure useful?

Neural Network

2-layer network: $\boldsymbol{f}=\boldsymbol{W}_{\mathbf{2}} \max \left(\mathbf{0}, \boldsymbol{W}_{\mathbf{1}} \boldsymbol{x}\right)$

Net of Artificial Neurons

Neural Network

[^0]
Activation Functions

$$
\left.f=W_{\mathbf{3}} \cdot\left(W_{\mathbf{2}} \cdot\left(W_{\mathbf{1}} \cdot x\right)\right)\right)
$$

Why activation functions?

Simply concatenating linear layers would be so much cheaper...

Neural Network

Why organize a neural network into layers?

Biological Neurons

Biological Neurons

Artificial Neural Networks vs Brain

Artificial neural networks are inspired by the brain, but not even close in terms of complexity!
The comparison is great for the media and news articles though... ©

Artificial Neural Network

Neural Network

- Summary
- Given a dataset with ground truth training pairs $\left[x_{i} ; y_{i}\right]$
- Find optimal weights and biases \boldsymbol{W} using stochastic gradient descent, such that the loss function is minimized
- Compute gradients with backpropagation (use batch-mode; more later)
- Iterate many times over training set (SGD; more later)

Computational Graphs

Computational Graphs

- Directional graph
- Matrix operations are represented as compute nodes.
- Vertex nodes are variables or operators like +, - . *, /. log(), exp()...
- Directional edges show flow of inputs to vertices

Computational Graphs

- $f(x, y, z)=(x+y) \cdot z$

Evaluation: Forward Pass

- $f(x, y, z)=(x+y) \cdot z \quad$ Initialization $x=1, y=-3, z=4$

Computational Graphs

- Why discuss compute graphs?
- Neural networks have complicated architectures

$$
\boldsymbol{f}=W_{5} \sigma\left(W_{4} \tanh \left(W_{3}, \max \left(\mathbf{0}, W_{2} \max \left(\mathbf{0}, W_{1} \boldsymbol{x}\right)\right)\right)\right)
$$

- Lot of matrix operations!
- Represent NN as computational graphs!

Computational Graphs

A neural network can be represented as a computational graph...

- it has compute nodes (operations)
- it has edges that connect nodes (data flow)
- it is directional
- it can be organized into 'layers'

Computational Graphs

$$
\begin{gathered}
z_{k}^{(2)}=\sum_{i} x_{i} w_{i k}^{(2)}+b_{k}^{(2)} \\
a_{k}^{(2)}=f\left(z_{k}^{(2)}\right) \\
z_{k}^{(3)}=\sum_{i} a_{i}^{(2)} w_{i k}^{(3)}+b_{k}^{(3)}
\end{gathered}
$$

Computational Graphs

- From a set of neurons to a Structured Compute Pipeline

Computational Graphs

- The computation of Neural Network has further meanings:
- The multiplication of \boldsymbol{W} and \boldsymbol{x} : encode input information
- The activation function: select the key features

Source; https://www.zybuluo.com/liuhuio803/note/981434

Computational Graphs

- The computations of Neural Networks have further meanings:
- The convolutional layers: extract useful features with shared weights

Source: https://medium.com/@timothy_terati/image-convolution-filtering-a54dce7c786b

Computational Graphs

- The computations of Neural Networks have further meanings:
- The convolutional layers: extract useful features with shared weights

Source: https://www.zybuluo.com/liuhuio803/note/981434
Loss Functions

What's Next?

We need a way to describe how close the network's outputs (= predictions) are to the targets!

What's Next?

Idea: calculate a 'distance' between prediction and target!

Loss Functions

- A function to measure the goodness of the predictions (or equivalently, the network's performance)

Intuitively,

- a large loss indicates bad predictions/performance \rightarrow performance needs to be improved by training the model)
- the choice of the loss function depends on the concrete problem or the distribution of the target variable

Regression Loss

- L1 Loss:

$$
L(\boldsymbol{y}, \widehat{\boldsymbol{y}} ; \boldsymbol{\theta})=\frac{1}{n} \sum_{i}^{n}\left\|y_{i}-\widehat{y_{i}}\right\|_{1}
$$

- MSE Loss:

$$
L(\boldsymbol{y}, \widehat{\boldsymbol{y}} ; \boldsymbol{\theta})=\frac{1}{n} \sum_{i}^{n}\left\|y_{i}-\widehat{y_{i}}\right\|_{2}^{2}
$$

Binary Cross Entropy

- Loss function for binary (yes/no) classification

$$
L(\boldsymbol{y}, \widehat{\boldsymbol{y}} ; \boldsymbol{\theta})=-\frac{1}{n} \sum_{i}^{n}\left[y_{i} \log \hat{y}_{i}+\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)\right]
$$

The network predicts the probability of the input belonging to the "yes" class!

Cross Entropy

$=$ loss function for multi-class classification

More General Case

- Ground truth: \boldsymbol{y}
- Prediction: $\widehat{\boldsymbol{y}}$
- Loss function: $L(\boldsymbol{y}, \widehat{\boldsymbol{y}})$
- Motivation:
- minimize the loss $<=>$ find better predictions
- predictions are generated by the NN
- find better predictions <=> find better NN

Initially

During Training...

During Training...

Training Curve

Training time

How to Find a Better NN?

How to Find a Better NN?

- Loss function: $L(\boldsymbol{y}, \widehat{\boldsymbol{y}})=L\left(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x})\right)$
- Neural Network: $f_{\boldsymbol{\theta}}(\boldsymbol{x})$
- Goal:
- minimize the loss w.r. t. $\boldsymbol{\theta}$

Optimization! We train compute graphs with some optimization techniques!

How to Find a Better NN?

- Minimize: $L\left(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x})\right)$ w.r.t. $\boldsymbol{\theta}$
- In the context of NN, we use gradient-based optimization

How to Find a Better NN?

- Minimize: $L\left(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x})\right)$ w.r.t. $\boldsymbol{\theta}$

How to Find a Better NN?

- Given inputs \boldsymbol{x} and targets \boldsymbol{y}
- Given one layer NN with no activation function

$$
f_{\theta}(x)=W x, \quad \theta=W
$$

Later $\boldsymbol{\theta}=\{\boldsymbol{W}, \boldsymbol{b}\}$

- Given MSE Loss: $L(\boldsymbol{y}, \widehat{\boldsymbol{y}} ; \boldsymbol{\theta})=\frac{1}{n} \sum_{i}^{n}\left\|y_{i}-\widehat{y_{i}}\right\|_{2}^{2}$

How to Find a Better NN?

- Given inputs \boldsymbol{x} and targets \boldsymbol{y}
- Given one layer NN with no activation function
- Given MSE Loss: $L(\boldsymbol{y}, \widehat{\boldsymbol{y}} ; \boldsymbol{\theta})=\frac{1}{n} \sum_{i}^{n}\left\|y_{i}-\boldsymbol{W} \cdot x_{i}\right\|_{2}^{2}$

How to Find a Better NN?

- Given inputs \boldsymbol{x} and targets \boldsymbol{y}
- Given one layer NN with no activation function

$$
f_{\theta}(\boldsymbol{x})=\boldsymbol{W} \boldsymbol{x}, \quad \boldsymbol{\theta}=\boldsymbol{W}
$$

- Given MSE Loss: $L(\boldsymbol{y}, \widehat{\boldsymbol{y}} ; \boldsymbol{\theta})=\frac{1}{n} \sum_{i}^{n}\left\|\boldsymbol{W} \cdot x_{i}-y_{i}\right\|_{2}^{2}$
- $\nabla_{\theta} L\left(\boldsymbol{y}, f_{\theta}(\boldsymbol{x})\right)=\frac{2}{n} \sum_{i}^{n}\left(\boldsymbol{W} \cdot x_{i}-y_{i}\right) \cdot x_{i}^{T}$

How to Find a Better NN?

- Given inputs \boldsymbol{x} and targets \boldsymbol{y}
- Given a multi-layer NN with many activations $\boldsymbol{f}=W_{5} \sigma\left(W_{4} \tanh \left(W_{3}, \max \left(\mathbf{0}, W_{2} \max \left(\mathbf{0}, W_{1} \boldsymbol{x}\right)\right)\right)\right)$
- Gradient descent for $L\left(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x})\right)$ w. r. t. $\boldsymbol{\theta}$
- Need to propagate gradients from end to first layer (\boldsymbol{W}_{1}).

How to Find a Better NN?

- Given inputs \boldsymbol{x} and targets \boldsymbol{y}
- Given multi-layer NN with many activations

How to Find a Better NN?

- Given inputs \boldsymbol{x} and targets \boldsymbol{y}
- Given multilayer layer NN with many activations $\boldsymbol{f}=W_{5} \sigma\left(W_{4} \tanh \left(W_{3}, \max \left(\mathbf{0}, W_{2} \max \left(\mathbf{0}, W_{1} \boldsymbol{x}\right)\right)\right)\right)$
- Gradient descent solution for $L\left(\boldsymbol{y}, f_{\boldsymbol{\theta}}(\boldsymbol{x})\right)$ w. r.t. $\boldsymbol{\theta}$
- Need to propagate gradients from end to first layer (W_{1})
- Backpropagation: Use chain rule to compute gradients
- Compute graphs come in handy!

How to Find a Better NN?

- Why gradient descent?
- Easy to compute using compute graphs
- Other methods include
- Newtons method
- L-BFGS
- Adaptive moments
- Conjugate gradient

Summary

- Neural Networks are computational graphs
- Goal: for a given train set, find optimal weights
- Optimization is done using gradient-based solvers
- Many options (more in the next lectures)
- Gradients are computed via backpropagation
- Nice because can easily modularize complex functions

Next Lectures

- Next Lecture:
- Backpropagation and optimization of Neural Networks
- Check for updates on website/piazza regarding exercises

Tा

See you next week ;

Further Reading

- Optimization:
- http://cs231n.github.io/optimization-1/
- http://www.deeplearningbook.org/contents/optimizatio n.html
- General concepts:
- Pattern Recognition and Machine Learning - C. Bishop
- http://www.deeplearningbook.org/

[^0]: Source: https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964

