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CNN Architectures
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Convolutions on RGB Images

32 x 32 X 3 image (pixels x)

| | activation map
/ 5 X 5 x 3 filter (weights w) (also feature map)

Convolve

"

slide over all spatial locations x;
and compute all output z;;

w/0 padding, there are

28 x 28 locations 1

3
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Convolution Layer

32 X 32 X 3 Image

/ 5% 5 x 3 filter activation maps

Convolve

E— )

Let's apply a different filter
with different weights! 28

14

3
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Convolution Layer

32 X 32 X 3 image Convolution “Layer”

7/ A
activation maps !

Convolve

B

Let's apply ““five™ filters,
each with different weights!

3
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Convolution Layers: Dimensions

Input width of N
=4 Input: N X N
I Filter F X F
= Stride: S
9
I

of F

Output (5= + 1) X (- + 1)

Input height of N

N=7F=35=1: 7—;3+1=5

N=7F=358=2: 77‘3+1=3
N=7F=35=3: %+1=2.3333

,

Fractions are illegal
12DL: Prof. Niessner 5




Convolution Layers. Padding

0Oo|0(0(0|O0]|O
2 0
=
& 0
@)
O 0 0
S 1o 0
> |0 0
™~
O |0 0
<
C 0 0
0o(0|0|]O0O|O0|O0(O0O|O0]|O
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Types of convolutions:

 Valid convolution: using
No padding

« Same convolution:
output=input size

F-1

Set paddingto P = —-



CNN Learned Filters

Low-Level| |Mid-Level| |High-Level| | Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
12DL: Prof. Niessner



CNN Prototype

RELU RELU RELU RELU RELU RELU
CONVlCONVl CONVlCONVl CONV
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TUTi

Classic Arcnitectures
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L eNet

« Digit recognition: 10 classes

"1

32x32 x1

Input: 32x32 grayscale images
This one: Labeled as class “7”

[LeCun et al. ‘98] LeNet
l2DL: Prof. Niessner 10



L eNet

« Digit recognition: 10 classes

"1

32%32 x1 28x28%6

« Valid convolution: size shrinks
« How many conv filters are there in the first layer?

l2DL: Prof. Niessner
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L eNet

« Digit recognition: 10 classes

avg pool

—
=%
s=2

—
5X 5

s=1

32%32 x1 28x28%6 14x14%6

« At that time average pooling was used, now max
pooling IS mMuch more commaon

2Dl Prof. Niessner 12



L eNet

« Digit recognition: 10 classes

avg pool

avg pool
—
5x5 5><5

f2
s =2

32x32 x1 28X%28%6 14%x14%6 10x10x16 bx5bx16

« Again valid convolutions, how many filters?

2Dl Prof. Niessner
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"1

32x32 x1

5X 5

28%X28%6

L eNet

« Digit recognition: 10 classes

avg pool
5 X 5

14%x14%6

10x10x16

avg pool

—
=2
s=2

X516

120 84

« Use of tanh/sigmoid activations = not common now!

2Dl Prof. Niessner
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L eNet

« Digit recognition: 10 classes

avg pool avg pool
—> — —> —»( \—> }’7
BXS 5 b4 5 f=2
g=1 s=2
32x32 X1 28X%28%6 14x14%6 10x10x16 BXax16
120 84

e Conv -> Pool -> Conv -> Pool -> Conv -> FC

2Dl Prof. Niessner 15



L eNet

« Digit recognition: 10 classes | 60K parameters

avg pool avg pool
—> — —> —»( \—> }’7
BXS 5x5 f=2
s=1 s=2
32x32 X1 28X%28%6 14x14%6 10x10x16 BXax16

120 84

« Conv ->Pool -> Conv -> Pool -> Conv -> FC
« Aswe go deeper: Width, Height¥ Number of Filters ¢

2Dl Prof. Niessner 16



Test Benchmarks

* ImageNet Dataset:
ImageNet Large Scale Visual Recognition Competition (ILSVRC)

[Russakovsky et al, IJCV'15] 'ImageNet Large Scale Visual Recognition Challenge”

l2DL: Prof. Niessner 17



Common Performance Metrics

« Top-1score: check if a sample's top class (e the one
with highest probability) is the same as its target label

« Top-5 score: check if your label is in your 5 first
oredictions (.e. predictions with 5 highest
orobabilities)

« — TOp-5 error: percentage of test samples for which
the correct class was not in the top 5 predicted
classes

12DL: Prof. Niessner 18



AlexNet

« CutlmageNet error down in half

2Dl Prof. Niessner

ILSVRC top-5 error on ImageNet

22.5
15

7.5

2010 20Mm 2012 2013 2014 Human  ArXiv 2015
Non-CNN 4
CNN

19



AlexNet

22T %227 %3

[Krizhevsky et al. NIPS'12] AlexNet

2Dl Prof. Niessner 20



AlexNet

1151
=4

B5x5b X 96 2T%x27 x96
22T %227 %3

[Krizhevsky et al. NIPS'12] AlexNet

2Dl Prof. Niessner 21



AlexNet

5X 5
same

55X5H5 X 96 27Tx27 x96 2TX27 X256 13%x13 X256

11511
s=4

22T %227 %3

e Use of same convolutions
« Aswith LeNet Width, Height ¥ Number of Filters 4

[Krizhevsky et al. NIPS12] AlexNet

2Dl Prof. Niessner 22



AlexNet

— —
11x 11 5X 5
=4 same

55X5H5 X 96 27Tx27 x96 2TX27 X256 13%x13 X256

MAX-POOL
axag 3x3

13%x13 x384 13%18 %384 13%13 %266 6X6 X256

22T %227 %3

—

3 X3
same

[Krizhevsky et al. NIPS'12] AlexNet

2Dl Prof. Niessner 23



AlexNet

5X 5
same

55X5H5 X 96 27Tx27 x96 2TX27 X256 13%x13 X256

1111
s=4

BoIKIRT X3
MAX-POOL
—> —> —> — —>
3X3 3X%X3 3x3
same
13x13 x384 13x13 x384 13x13 X256 6X6 X256 9216 4096 4096

* SO]CtmaX ]Cor 1000 C[aSSGS [Krizhevsky et al. NIPS'12] AlexNet

2Dl Prof. Niessner 24



AlexNet

« Similar to LeNet but much bigger (~1000 times)

« Use of RelLU instead of tanh/sigmoid

l2DL: Prof. Niessner

o0OM parameters

[Krizhevsky et al. NIPS'12] AlexNet
25



VGGNet

o Striving for simplicity
o CONV =3x3 filters with stride 1, same convolutions

« MAXPOOL = 2x2 filters with stride 2

[Simonyan and Zisserman ICLR15] VGGNet

l2DL: Prof. Niessner



Conv-3x3,5-1
VGGNet epooloee?

—
[CONV 641
X2

224224 %3

[Simonyan and Zisserman ICLR'15] VGGNet
I2DL: Prof. Niessner 27



Conv-3x3,5-1
VGGNet epooloee?

—> 224X224x64
[CONV 641
X2

224224 %3

[Simonyan and Zisserman ICLR'15] VGGNet
I2DL: Prof. Niessner 28



Conv-3x3,5-1
VGGNet epooloee?

—> 224%x224Xx64—» 112%112 X64
[CONV 641 POOL
X2 ’

224224 %3

[Simonyan and Zisserman ICLR'15] VGGNet
I2DL: Prof. Niessner 29



Conv-3x3,5-1
VGGNet epooloee?

——> 224X224X64—» 112x112 X64 —» 112x112 X128 —» 56X56 X128
[CONV 641 POOL [CONV 128] POOL
X2 ’ %2

224224 %3

[Simonyan and Zisserman ICLR'15] VGGNet
I2DL: Prof. Niessner 30



Conv-3x3,5-1
VGGNet epooloee?

——> 224X224X64—» 112x112 X64 —» 112x112 X128 —» 56X56 X128
[CONV 641 POOL [CONV 128] POOL
X2 ’ X2

224 %I %3

—» H56XH6 X256 —» 28X28 X256 — > 28%x28 X512 —» 14x14x512
[CONV 256] POOL [CONV 512] POOL
X3 X3

—» 14%x14 X512 ———» Tx7x512 ————» FC ——» FC —» Softmax
[CONV 512] POOL 4096 4096 1000
%3

[Simonyan aﬁd Zisserman ICLR'15] VGGNet

l2DL: Prof. Niessner 31



VGGNet

Conv -> Pool -> Conv -> Pool -> Conv -> FC
As we go deeper: Width, Height ¥ Number of Filters 4

Called VGG-16: 16 layers that have welights

138M parameters

Large but simplicity makes it appealing

[Simonyan and Zisserman ICLR15] VGGNet
[2DL: Prof. Niessner .



o A ot of architectures
were analyzed

VGGNet

ConvNet Conﬁf,;uration
A A-LRN B C E
11 weight 11 weight 13 weight 16 weight 16 weightl 19 weight
layers layers layers layers layers layers
mput (224 x 224 RGB imag;

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 I conv3-64
LRN conv3-64 conv3-64 conv3-64 I conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 [Nconv3-128H| conv3-128
conv3-128 | conv3-128 | conv3-128%| conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 |gconv3-256_| conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 [Mconv3-256f| conv3-256
convl-256 conv3—256l conv3-256
conv3-256

maxpool
conv3-312 | conv3-512 | conv3-512 | conv3-512 conv3-512l conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 [Nconv3-512| conv3-512
convl-512 | conv3-5128| conv3-512
Iconv3—512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 [Hconv3-5128| conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 |gconv3-512"| conv3-512
convl-512 Mconv3-5128( conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

[Simonyan and Zisserman 2014]

l2DL: Prof. Niessner

Table 2: Number of parameters (in millions).

Network

AALRN | B

C D

Number of parameters 133 133

134 | 138

144




TUTi

Skip Connections

I2DL: Prof. Niessner



The Problem of Depth

« AS we add more and more layers, training becomes
narder

« Vanishing and exploding gradients

« How can we train very deep nets?

l2DL: Prof. Niessner



Residual Block

« Two layers .
PV A SN T SN [ RERPW A S |

nput —— WEIxL=1 4 pb— xb = f(WExE=1 + b1y —
Linear J Non-linearity

VY 7 o S f(WL+1XL + bL+1)

l2DL: Prof. Niessner 36



« Two layers

Residual Block

Skip connection

L+1

nput = Linear =——— ' —— Llincar —

/
//
/

2Dl Prof. Niessner

Main path

37



Residual

« Two layers
yL-1_, @

xL%
—

Block

L+1

_>x

}

xL+1 — f(WL'l'le + bL+1 + xL—l)

I
Input = Linear —>J

/

//
/

" —— Llinear =——

2Dl Prof. Niessner



Residual Block

« Usually use a same convolution since we need same
dimensions

« Otherwise we need to convert the dimensions with a
matrix of learned weights or zero padding

l2DL: Prof. Niessner



ResNet Block

Plain Net Residual Net
X X
Weight Layer Weight Layer
Any two |dentity
stacked layers ReLU F(x) ReLU X
Weight Layer Weight Layer

H(x) RelU F(x) +x

RelLU

[He et al. CVPR'16] ResNet
l2DL: Prof. Niessner 40
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= 5] o o =
ml |m| |= o =
212 1% R
& | L

34-layer residual

o Xavier/2 initialization ResNet-152:
o SGD + Momentum (0.9) O0M parameters

Learning rate 0.1, divided by 10 when plateau
 Mini-batch size 250

« Weight decay of 1e-5

« No dropout

[He et al. CVPR'16] ResNet
l2DL: Prof. Niessner A1



ResNet

o Without ResNet, if we make the network deeper, at
some point performance starts to degrade:

S
w10 — — — — = = T T R
E 20-layer
el plain-20| — — T T T T T T T T T T
plain-32
plain-44
0_p1a]‘n-§6 L 1 L 1 L
0 1 2 3 4 5 6

l2DL: Prof. Niessner



ResNet

« With Residual Blocks, performance gets better with
deeper network:

ResNet-20

ResNet-32

ResNet-44
=——ResNet-56
= ResNet-110

S
w 10 — — — — — — =T T TR = = o= 10 W T T YN g
E 20-layer 20-layer
S—————— T T sl YA e e 110-layer
plain-20
plain-32
plain-44
0 _plaill-§6 I L L L L -
0 1 2 3 4 5 6 5 6
iter. (1e4) iter. (le4)
43
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NN

Why do ResNets Work?

B

« How is this block really affecting me?

2Dl Prof. Niessner
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NN

Why do ResNets Work?

2Dl Prof. Niessner

‘ xL—l % % - XL+1

xL+1 — f(WL"'le + bL+1 + xL—l)

~/CrO

~/CrO

XL+1 — ]c(xL—l)

45



Why do ResNets Work?

L 4
L—1 X L+1

« We kept the same values and added a non-linearity

XL+1 — ]c(xL—l)

2Dl Prof. Niessner



Why do ResNets Work?

L 4
L—1 X L+1

« [he identity is easy for the residual block to learn

« Guaranteed it will not hurt performance, can only
mprove

2Dl Prof. Niessner 47
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1x1 Convolutions

I2DL: Prof. Niessner



Recall: Convolutions on Images

Image 5x5

sl |w

}

5:3+4(-1)-34+(-1)-24+(-1)-0+(—-1)-4=
15-9=6

Output 3x3

12DL: Prof. Niessner 49



Image 5x5

l2DL: Prof. Niessner

1x1 Convolution

[;]3 2 | 5 | 3

\ 3 2 1 -3
1\\0 3 3 5
2 3 0 1 4 4
5\6 7 9 -1
\

— %

é P

D 2

-

)

e

What is the output size?

50



1x1 Convolution

-10

o

-

o
-1
\
- | N[

GxG abeul|

= —10

—5 %2

'l ~

IXT |oUloM

l2DL: Prof. Niessner



1x1 Convolution

09| F 0|
— )
1._26001_
< |0 | T
o|lwo|lo|o|Y
Slo|n|T(8 ~
Il
N
*
__ T
N (M n (<)
\
_.01349—
\
\
N[~V
\
\
|
m m|lolo|w ~N
X1 12Ul
0w a|a]n| PTIOUSH
GxG abeul|
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1x1 Convolution

5|3 ]2 |53 0] 6 | 4 | 10 6
g 4 3 2 1 -3 8 6 4 2 6
o1 0 3 3 5 2 0 6 6 10
:ED -2 0 1 4 4 -4 0 2 3 3
> | 6 |7 |9 |1 10 | 12 | 14 | 18 | -2

« 1X1 kernel: keeps the dimensions and scales input

12DL: Prof. Niessner



1x1 Convolution

O

1 output

32

3

« Same as having a 3 neuron fully connected layer

[2DL: Prof. Niessner 54



1x1 Convolution

[Li et al. 2013]

5 filters 1x1x3

g

« As always we use more convolutional filters

I2DL: Prof. Niessner
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Using 1x1 Convolutions

e Use it to shrink the number of channels

o Further adds a non-linearity = one can learn more
complex functions

32 32

32 Conv 1x1x200
+ RelLU

32
200 32

l2DL: Prof. Niessner



Inception Layer

I2DL: Prof. Niessner



Inception Layer

* Tired of choosing filter sizes?——
e Use them all

1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling
e« All same convolutions dee

3X3 max pooling Is with stride 1

2Dl Prof. Niessner 58



Inception Layer

e Possible size of the B8 X AiE

Filter

O U t p u t concatenation

///vﬂ\
28 X 28 X 64 28 x 28 x 128 28 X 28 x 32 28 x 28 x 192
1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

&

28 X 28 x 192
Previous layer

 Not sustainaplel

2Dl Prof. Niessner 59



Inception Layer. Computational Cost

200

l2DL: Prof. Niessner

32

02 Conv 5x5x200 32

+RellU

92

Multiplications: 5x5x200 x 32x32x92 ~ 470 million

1 value of the output volume

60



Inception Layer. Computational Cost

32 32
16 Conv 1x1 92 Conv 5x5 32
+ RelLU + RelLU
32
200 16 92
Multiplications: 1x1x200x32x32x16 EXEX10X32X32X02 ~ 40 million

Reduction of multiplications by 1/10

l2DL: Prof. Niessner 61



Inception Layer

3x3 max pooling

Filter
concatenation
121 convolutions 3x3 convolutions 3%5 convolutions
[
Previous layer

(a) Inception module, naive version

2Dl Prof. Niessner

Filter
concatenation

7 =

1x1 convolutions

Q‘mom

3x3 convolutions x5 convolutions 1x1 convalutions
) I )
1x1 convolutions 3x3 max pooling

Previous layer

(b) Inception module with dimensionality reduction

[Szegedy et al CVPR'15] Googl.eNet

62
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Inception Layer. Dimensions

\We do not want max pool
result to take up almost all

the output

28 X 28 X 64
1x1 convolutions

28 X 28 X 256
Filter
concatenation
28 X 28 X 128 28 X 28 x 32 28 X 28 x 32

3x3 convolutions

5x5 convolutions

1x1 convolutions

A

[}

28 X 28 X 96

28 X 28 x 16
1x1 convolutions

*
28 X 28 x 192
3x3 max pooling

AA"

28 X 28 x 192

Previous layer

[Szegedy et al CVPR'15] Googl.eNet

~
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GooglLeNet: Using the Inception Layer

Inception block

Extra max pool layers to
reduce dimensionality

[Szegedy et al CVPR'15] Googl.eNet
I2DL: Prof. Niessner 64



Xception Net

« 'Extreme version of Inception”: applying (modified)
Depthwise Separable Convolutions instead of normal

convolutions
« 30 conv layers, structured into several modules with
skip connections

« outperforms Inception Net V3

[Chollet CVPR'17] Xception

l2DL: Prof. Niessner



Depth-wise separable convolutions

-(®-

Normal convolutions act on all channels.

I2DL: Prof. Niessner 66



Depth-wise separable convolutions

a

12

Filters are applied only at certain depths of the features,
Normal convolutions have groups set to 1, the convolutions
used in this image have groups set to 3.

classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

classtorch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

I2DL: Prof. Niessner 67



Depth-wise separable convolutions

But the depth size Is always the same!

classtorch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

classtorch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=3)

I2DL: Prof. Niessner 68



Depth-wise separable convolutions

Solution:
1x1 convs!
3

I2DL: Prof. Niessner



I2DL: Prof. Niessner

But why?

Original convolution
256 kernels of size 5x5x3

Multiplications:
250X5X5x3 X (8x8 locations) = 1.228.800

70



256
s 8
12
8
12 | i
3
3 a
12
| i : | .
8 1
8 8

I2DL: Prof. Niessner

But why?

Original convolution
256 kernels of size 5x5x3

Multiplications:
250X5X5x3 X (8x8 locations) = 1.228.800

Depth-wise convolution
3 kernels of size 5x5x1

Multiplications:
5X5x3 X (8x8 locations) = 4800 | ess
1x1 convolution computation!

256 kernels of size 1x1x3

Multiplications:
250x1X1X3X (8x8 locations) = 49152
71



Shallow
30 28.2
25.8
25
20
15
10
5
0
ILSVRC ILSVRC
2010 2011

2Dl Prof. Niessner

ImageNet Benchmark

ImageNet Classification top-5-error (%)

152 Layers

*Revolution of Depth

8 Layers
16.4
8 Layers
11.7
19 Layers ,
7.! 22 Layers 36 Layers
6.66
5¢5
I I " l B
AlexNet ZF VGG GooglLeNet  Xception ResNet
(ILSVRC (ILSVRC (ILSVRC (ILSVRC (2016) (ILSVRC
2012) 2013) 2014) 2014) 2015)

2.99

Trimps-

Soushen

(ILSVRC
2016)

2.25

SENet
(ILSVRC
2017)

/2



TUTi

Fully Convolutional
Network

I2DL: Prof. Niessner



Classification Network

convolution fully connected
D2 D /// abby
cat”
227 x 227 55 x 55 27 x 27 13 x13

2Dl Prof. Niessner 74



-CN:

Becoming Fully Convolutional

convolution

@&@///

227 x 227 55 x 55 27 x 27 13 x13

2Dl Prof. Niessner

Convert fully connected layers to convolutional layers!

/5



-CN: Becoming Fully Convolutional

convolution
HxW H/4 x W/4 H/8 x W/8 H/16 x W/16 H/32 x W/32

l2DL: Prof. Niessner



l2DL: Prof. Niessner

-CN: Upsampling Output

convolution

H/4 x W/4  H/8 x W/8

oy

H/16 x W/16 H/32 x W/32

77




Semantic Segmentation (FCN)

forward /inference

<€

backward/learning

How do we go back
to the input size?

[Long and Shelhamer. 15] FCN

l2DL: Prof. Niessner 78



Types of Upsampling

* 1 Interpolation

2Dl Prof. Niessner



Types of Upsampling

* 1 Interpolation Originalimage [ x10

Nearest neighbor interpolation  Bilinear interpolation Bicubic interpolation

12DL: Prof. Niessner Image: Michael Guerzhoy 80



Types of Upsampling

* 1 Interpolation

 Few artifacts

l2DL: Prof. Niessner



Types of Upsampling

e 2 Transposed conv

—) - E ﬁ + CONVS
 efficient H H H:H:

[Dosovitskiy, Springenberg, Brox, "Learning to Generate Chairs with Convolutional Networks®, CVPR 2015]
|2DL: Prof. Niessner 82




Types of Upsampling

« 2. Transposed convolution Output 5x5

— Unpooling
— Convolution filter (learned)

— Also called up-convolution
(never deconvolution)

I2DL: Prof. Niessner 83



Refined Outputs

« |f one does a cascade of unpooling + conv
operations, we get to the encoder-decoder

architecture

« Even more refined: Autoencoders with skip
connections (aka U-Net)

l2DL: Prof. Niessner



IC
Z
D
—

input
image -
tile

(]
¥

572 x 572
570 x 510

302 x 302

128 128

ob 128

.

38 64 B4 2

output
segmentation
| map

¥

388 x 355 ¥
388 = 388

=»conv 3x3, RelLU
~+ copy and crop
# max pool 2x2
# up-conv 2x2
= conv 1xl

U-Net architecture: Each blue box is a multichannel feature map. Number of channels denoted at
the top of the box, dimensions at the top. White boxes are copied feature maps.

[Ronneberger, Fischer, Brox, "U-net: Convolutional networks for biomedical image segmentation’, MICCAI'15]

I2DL: Prof. Niessner
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U-Net: Encoder

eft side: Contraction Path (Encoder)
« Captures context of the Image

« Follows typical architecture of a CNN:
— Repeated application of 2 unpadded 3x3 convolutions
— Each followed by RelLU activation
— 2x2 maxpooling operation with stride 2 for downsampling
— At each downsampling step, # of channels Is doubled

> as before: Height, Width¥, Depth: 4

[Ronneberger, Fischer, Brox, "U-net: Convolutional networks for biomedical image segmentation’, MICCAI'15]

12DL: Prof. Niessner



U-Net: Decoder

Right Side: Expansion Path (Decoder):

« Upsampling to recover spatial locations for assigning
class labels to each pixel
— 2x2 up-convolution that halves number of input channels

— Skip Connections: outputs of up-convolutions are concatenated
with feature maps from encoder

— Followed by 2 ordinary 3x3 convs
— final layer: 1x1 conv to map 64 channels to # classes

e Height, Width: 4,  Depth: ¥

[Ronneberger, Fischer, Brox, "U-net: Convolutional networks for biomedical image segmentation’, MICCAI'15]

12DL: Prof. Niessner



TUTi

OpJject Detection

I2DL: Prof. Niessner



2Dl Prof. Niessner

What is Object Detection?

Object Detection

CAT, DOG, DUCK

LN

Y
Multiple objects

89



What Is object detection?

« Goal localize + classify objects in an
image

* [nput iImage

« Output: list of bounding boxes, class
labels (+ confidences)

Object Detection

CAT, DOG, DUCK

2Dl Prof. Niessner Q0



Challenges in Detection

« Convolutions are translationally equivariant
— Convolutions share weights: same filters slide across all

positions
— Shifting input image -> output feature maps will shift by
same amount N

4 HN

_

2D Prof Niessner https.//chriswolfvision medium.com/what-is-translation-equivariance-and-why-do-we-use-convolutions-to-get-it-6f18139d4c59 91



Challenges in Detection

« Convolutions are translationally equivariant

« Good for identifying "what' (e.g., classification), makes
‘where' challenging

« Detection: need to detect multiple objects, likely
different sizes/places

l2DL: Prof. Niessner



Region-Based CNNs (R-CNNs)

Bbox reg « Use selective search to
2 ad.l generate candidate regions

Bbox re SVMs .
=53 B — « \Warp/rescale each region
ConvNet to fixed image size, pass
ConvNet through a CNN

« CNN extracts features for
poredicting class + box offsets

« Slow: runs CNN separately
for each region

l2DL: Prof. Niessner [Girshick et al. CVPR'14] R-CNN 93



Fast R-CNN

« |nstead of running CNIN once per region, run CNN
once for the entire image

« Use region of interest (ROI) pooling to extract fixed-
size feature maps for each region

ROI-Pooling
Regions of Interest (ROIs)

l2DL: Prof. Niessner



Region of Interest Pooling

« Used to handle variable-sized object proposals
efficiently

« Proposed regions have different sizes and aspect
ratios

« Fully-connected layers expect fixed-size inputs

» Convert each variable-sized region of interest (ROI)
from the feature map and rescale it into a fixed-sized
output using max pooling

l2DL: Prof. Niessner



Region of Interest Pooling

« |[nput 8x8 feature map
« OQutput size: 2x2

input

0.86 0.88

Source: https.//deepsense.ai/region-of-interest-pooling-explained/

2Dl Prof. Niessner
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https://deepsense.ai/region-of-interest-pooling-explained/

Region of Interest Pooling

« |[nput 8x8 feature map
« OQutput size: 2x2

region proposal

0.86 0.88

Source: https.//deepsense.ai/region-of-interest-pooling-explained/
2Dl Prof. Niessner 97



https://deepsense.ai/region-of-interest-pooling-explained/

Region of Interest Pooling

« |[nput 8x8 feature map
« OQutput size: 2x2

pooling sections

Source: https.//deepsense.ai/region-of-interest-pooling-explained/
2Dl Prof. Niessner o8



https://deepsense.ai/region-of-interest-pooling-explained/

Faster R-CNN

« Use convolutions to get sliding o classifier

window effect ‘poonng
/

 Replace selective search with
a region proposal network /

<RPN> Region Proposal Network ’
— Small CNN that slides over feaf“remap‘

feature map
— Produces region proposals P

based on anchors s

[Ren et al. NeurlPS'15] Faster R-CNN
[2DL: Prof. Niessner



ANnchors

« Potential bounding box candidates where an object
can be detected

2D Prof. Niessner https.//medium.com/thedeephub/faster-r-cnn-object-detection-5dfe77104e31 100



Instance Segmentation

« Predict list of object bounding boxes, classes, and

pixel-wise masks

12Dl Pror. iNniessnier

Instance
Segmentation

C Y A e T N
e ~ 3

CAT, DOG, DUCK
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Mask R-CNN

« Extend Faster R-CNN to also predict pixel-wise mask

for each object

2Dl Prof. Niessner

Classification Scores: C
Box coordinates (per class): 4 * C

1
fi'
1 LA
- Conv Conv
// IFEoI Allgnl |
256 x 14 x14 256 x 14 x 14 Predict a mask for

each of C classes
Cx14x 14

[He et al. ICCV'17] Mask R-CNN
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R-CNNs for Detection + Segmentation

« R-CNN, Fast R-CNN, Faster R-CNN, Mask-RCNN:
two-stage detectors

« First generate region proposals, then refine boxes +
oredict class labels (+ masks)

« Today: end-to-end, unified approach with
transformers

l2DL: Prof. Niessner
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See you hext time!

I2DL: Prof. Niessner



References

We highly recommend to read through these papers!
« AlexNet [Krizhevsky et al. 2012]

« VGGNet [Simonyan & Zisserman 2014]

« ResNet [He et al. 2015]

« GoogleNet [Szegedy et al. 2014]

« Xception [Chollet 2016]

e Fast R-CNN [Girshick 2015]

« U-Net [Ronneberger et al. 2015]

EificientNet [Tan & Le 2019]

12DL: Prof. Niessner



https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1905.11946

