3D Scanning & Motion Capture

Optimization Methods for 3D Reconstruction

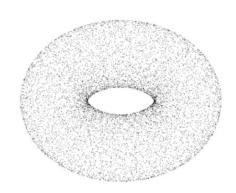
Prof. Matthias Nießner

Last Lecture: How to obtain "3D"?

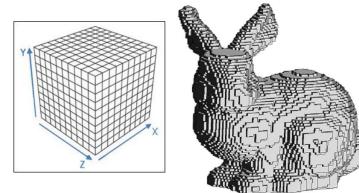
Velodyne

Last Lecture: Surface Representations

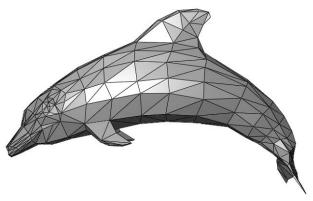
• Point Clouds



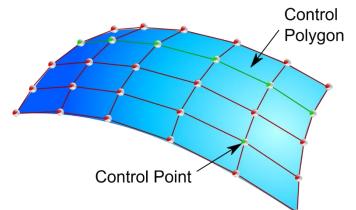
Voxels

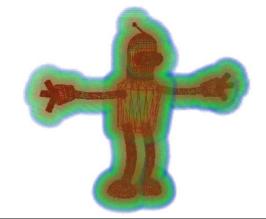


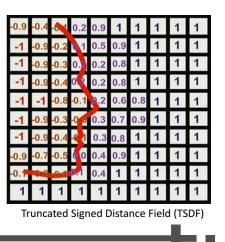
Polygonal Meshes



- Parametric Surfaces
- Implicit Surfaces

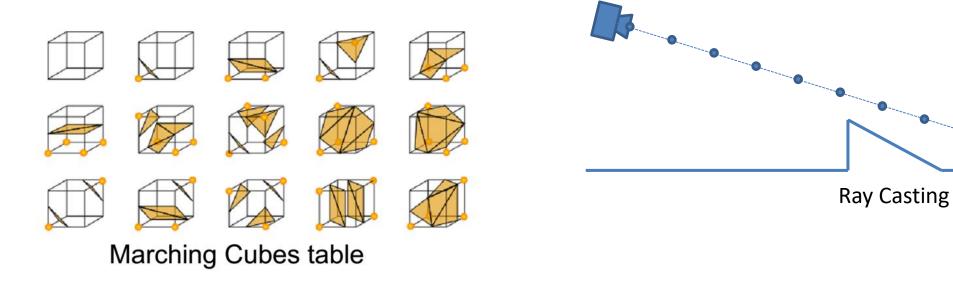






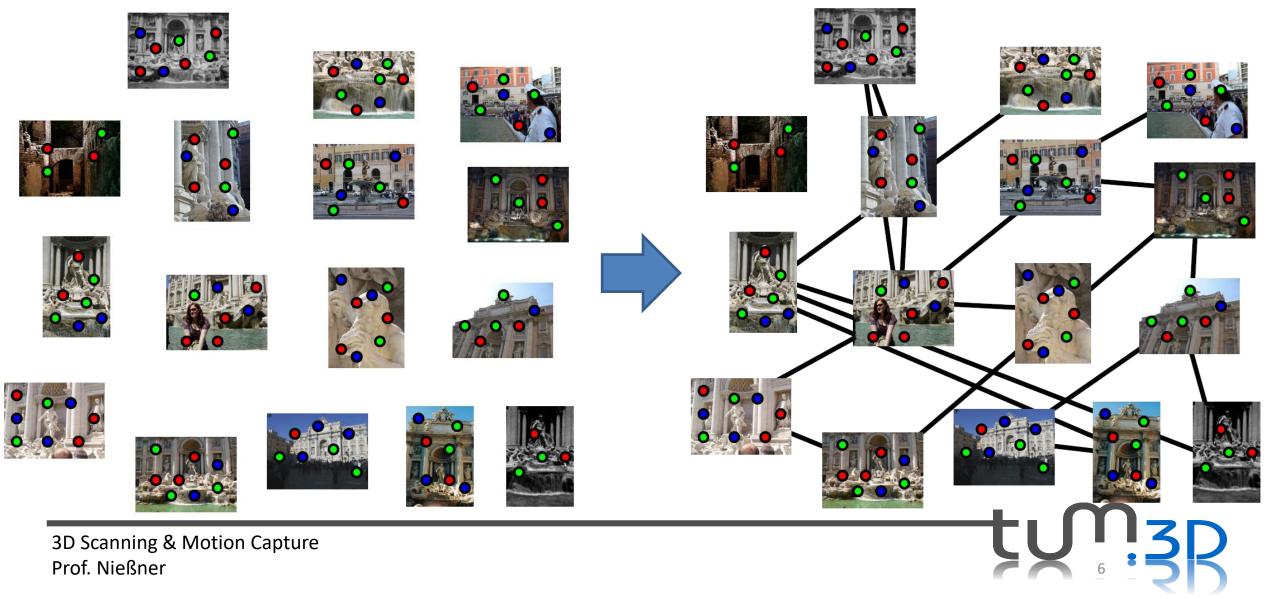
Last Lecture: Surface Representations

- Important Algorithms
 - Marching Cubes
 - Ray cast

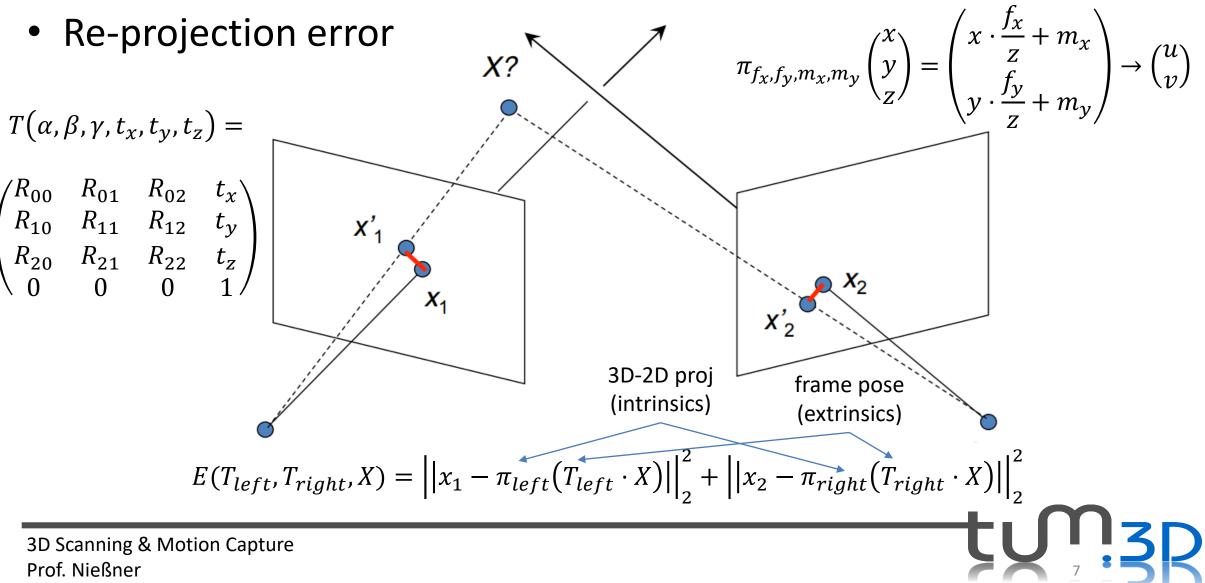


Last Lecture: Correspondence Finding / Matching

Last Lecture: Correspondence Finding / Matching



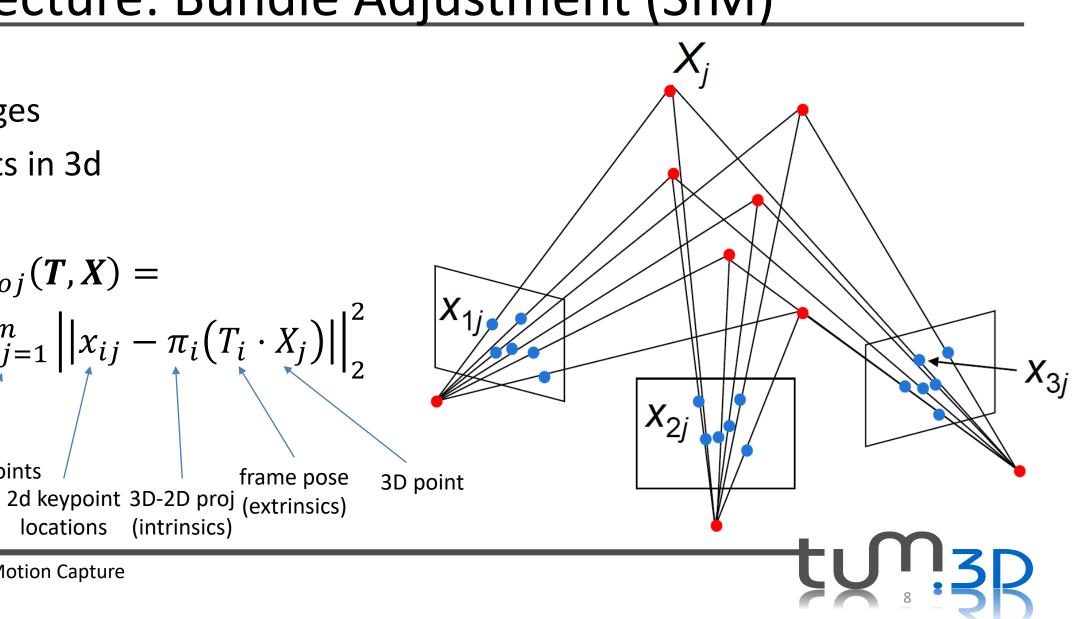
Last Lecture: Bundle Adjustment (SfM)



Last Lecture: Bundle Adjustment (SfM)

- *m* images
- *n* points in 3d
- $E_{re-proj}(\boldsymbol{T},\boldsymbol{X}) =$ $\sum_{i=1}^{m} \sum_{j=1}^{n} \left\| \left| x_{ij} - \pi_i (T_i \cdot X_j) \right| \right\|_2^2$

over images over 3d points frame pose 2d keypoint 3D-2D proj (extrinsics) locations (intrinsics)



Last Lecture: RGB-D "Bundling"

$$E_{bundle}(T) = \sum_{i,j}^{\#frames \ \#corresp.} \sum_{k} \left\| T_i p_{ik} - T_j p_{jk} \right\|_2^2$$

$$E_{depth}(T) = \sum_{i,j}^{\text{#frames #pixels}} \sum_{k}^{\text{#pixels}} \left\| \left(p_k - T_i^{-1} T_j \pi_d^{-1} (D_j (\pi_d (T_j^{-1} T_i p_k))) \right) \cdot n_k \right\|_2^2$$

$$E_{color}(T) = \sum_{i,j}^{\text{#frames #pixels}} \sum_{k} \left\| \nabla I(\pi_c(p_k)) - \nabla I(\pi_c(T_j^{-1}T_ip_k)) \right\|_2^2$$

Today: Optimization Methods for 3D Reconstruction

How do we solve these non-linear terms?

• Bundle Adjustment or RGB-D Bundling

$$E_{re-proj}(\boldsymbol{T},\boldsymbol{X}) = \sum_{i=1}^{m} \sum_{j=1}^{n} \left| \left| x_{ij} - \pi_i \left(T_i \cdot X_j \right) \right| \right|_2^2$$

$$E_{keypoint}(T) = \sum_{i,j}^{\#frames \ \#corresp.} \sum_{k} \left\| T_i p_{ik} - T_j p_{jk} \right\|_2^2$$

Least Squares

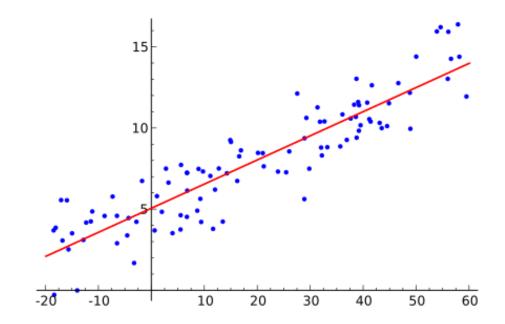
• Find solution that minimizes the sum of squared residuals

$$-f(x) = \sum r_i(x)^2 -f(x) = ||F(x)||_2^2, F(x) = [r_1(x), r_2(x), \dots, r_n(x)]^T -x^* = \underset{x}{\operatorname{argmin}} f(x) = \underset{x}{\operatorname{argmin}} ||F(x)||_2^2$$

$$-f(x) = \left\| \begin{bmatrix} r_1(x) \\ r_2(x) \\ \vdots \\ r_n(x) \end{bmatrix} \right\|_2^2$$

- Linear function: $y = m \cdot x + t$
 - Solve for m, t

•
$$r_i(m,t) = y_i - (m \cdot x_i + t)$$



•
$$r_i(m,t) = y_i - (m \cdot x_i + t)$$

•
$$x_i = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
, $y_i = \begin{bmatrix} 6 \\ 5 \\ 7 \\ 10 \end{bmatrix}$

•
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix}, b = \begin{bmatrix} 6 \\ 5 \\ 7 \\ 10 \end{bmatrix}$$

• Ax = b (over determined)

• Solve via normal equation $A^T A x = A^T b$

•
$$A^T A = \begin{bmatrix} 30 & 10 \\ 28 & 4 \end{bmatrix} \quad A^T b = \begin{bmatrix} 77 \\ 28 \end{bmatrix}$$

• Solve:
$$\begin{bmatrix} 30 & 10\\ 28 & 4 \end{bmatrix} \begin{bmatrix} m\\ t \end{bmatrix} = \begin{bmatrix} 77\\ 28 \end{bmatrix}$$

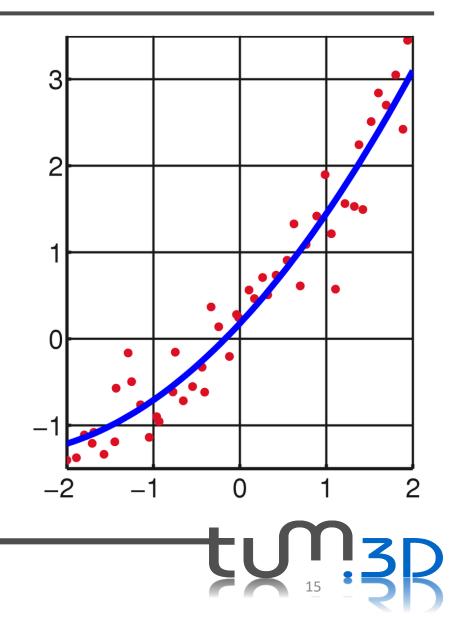
$$> \begin{bmatrix} m \\ t \end{bmatrix} = \begin{bmatrix} 3.5 \\ 1.4 \end{bmatrix}$$

- Quadratic function: $y = ax^2 + bx + c$
 - Solve for *a*, *b*, *c*
 - Linear with respect to *a*, *b*, *c*

•
$$r_i(a, b, c) = y_i - (ax^2 + bx + c)$$

•
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 2 & 1 \\ 9 & 3 & 1 \\ 16 & 4 & 1 \end{bmatrix}, b = \begin{bmatrix} 6 \\ 5 \\ 7 \\ 10 \end{bmatrix}$$

- Ax = b (over determined)
- Solve via normal equation $A^T A x = A^T b$



- Solve Normal Equation: $A^T A x = A^T b$
 - Compute Matrix Inverse?
 - Gradient descent?
- Linear Solve (iterative):
 - Jacobi Iteration
 - Gauss-Seidel Iteration
 - Conjugate Gradient Descent
- Linear Solve (direct):
 - QR-, LU-Decomposition
 - Cholesky Decomposition
 - -SVD

Hard to write a good solver yourself

- Numerical stability
- Scalability
- Efficiency (look at Eigen for template magic)

Linear Solvers

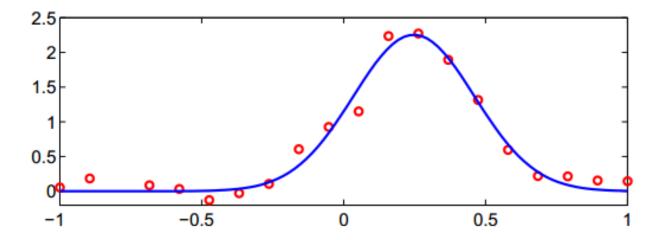
- **Eigen**: <u>http://eigen.tuxfamily.org/index.php?title=Main_Page</u>
 - Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms.
- Taucs: http://www.tau.ac.il/~stoledo/taucs/
 - TAUCS is a C library of sparse linear solvers.
- Umfpack
 - UMFPACK is a set of routines for solving unsymmetric sparse linear systems of the form Ax=b, using the Unsymmetric MultiFrontal method (Matrix A is not required to be symmetric)
- cuSPARSE: <u>http://docs.nvidia.com/cuda/cusparse/index.html</u>
 - The cuSPARSE library contains a set of basic linear algebra subroutines used for handling sparse matrices, running on the GPU using Nvidia CUDA
- Many more
 - https://en.wikipedia.org/wiki/Comparison_of_linear_algebra_libraries

• Find solution that minimizes the sum of squared residuals

$$-f(x) = \sum r_i(x)^2$$

 $-r_i$ non linear with respect to x

• Ex: Fitting a Gaussian model



•
$$M(x,t) = x_1 e^{-(t-x_2)^2/(2x_3)^2}$$
, $x = \begin{pmatrix} x_2 \\ x_2 \end{pmatrix}$

• Here:
$$r_i(x) = y_i - M(x, t_i)$$

• $\operatorname{argmin}_{x} f(x) = \left| |F(x)| \right|_{2}^{2}$

Gradient Descent (1st order):

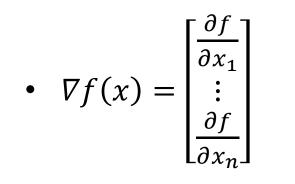
• $x_{k+1} = x_k - t \cdot \nabla f(x_k)$

Newton's Method (2nd order): • $x_{k+1} = x_k - H_f(x_k)^{-1} \nabla f(x_k)$

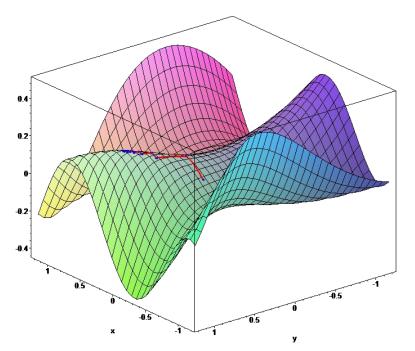
Non-Linear Least Squares: GD

Gradient Descent (1st order):

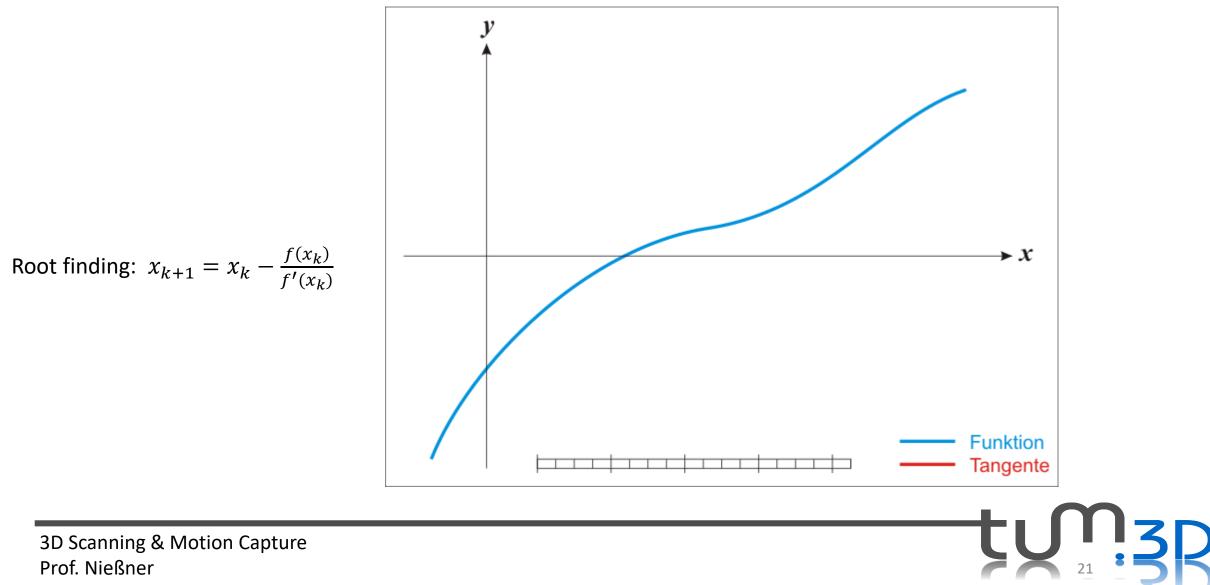
$$-x_{k+1} = x_k - t \cdot \nabla f(x_k)$$



- Need to determine step size
 - Line search
 - Momentum (i.e., track history)



Non-Linear Least Squares: Newton (root finding)



Non-Linear Least Squares: Newton

Newton's Method (2nd order):

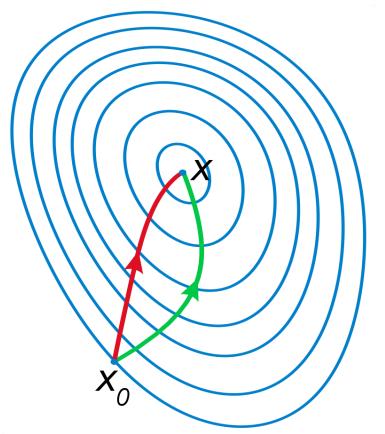
$$-x_{k+1} = x_k - H_f(x_k)^{-1} \nabla f(x_k)$$

• In 1D

- Root finding:
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

- Optimization (find root of derivative)

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$



Newton (red) uses curvature information, and takes a more direct path than GD (green)

• Jacobian:
$$J_{F}(x) = \begin{bmatrix} \frac{\partial F_{1}}{\partial x_{1}} & \cdots & \frac{\partial F_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{m}}{\partial x_{1}} & \cdots & \frac{\partial F_{m}}{\partial x_{n}} \end{bmatrix}$$

#variables
• Hessian: $H_{f}(x) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}} & \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}} \\ \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{n}^{2}} \end{bmatrix}$
#variables
Hessian: $H_{f}(x) = I_{\nabla f}(x)^{T}$

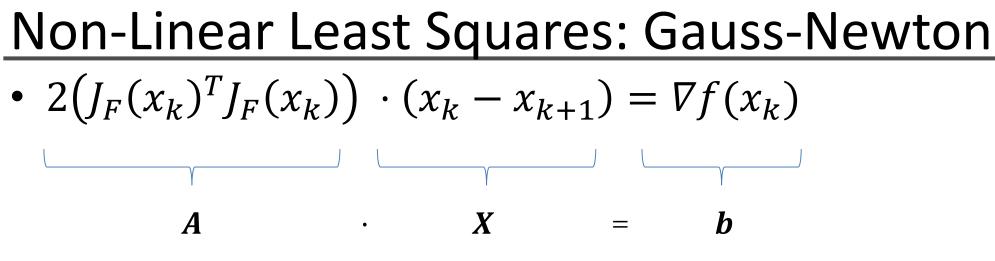
Non-Linear Least Squares: Gauss-Newton

- $x_{k+1} = x_k H_f(x_k)^{-1} \nabla f(x_k)$
 - 'true' 2nd derivatives are often hard to obtain (e.g., numerics) - $H_f \approx 2J_F^T J_F$
- Gauss-Newton (GN):

$$x_{k+1} = x_k - [2J_F(x_k)^T J_F(x_k)]^{-1} \nabla f(x_k)$$

• Solve linear system (again, inverting a matrix is unstable): $2(J_F(x_k)^T J_F(x_k))(x_k - x_{k+1}) = \nabla f(x_k)$

Solve for delta vector

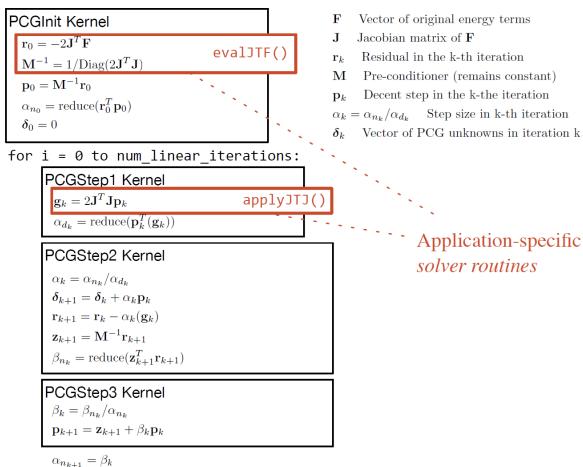


- Solve Ax = b
 - Could do matrix-free: applyJTJ, evalJTF

Non-Linear Least Squares: Gauss-Newton

• Solve Ax = b

- Common in our research:
 - Use Pre-conditioned Conjugate
 Gradient Descent (PCG)
 - Easy to parallelize; e.g., on GPUs



Non-Linear Least Squares: Levenberg

• Levenberg

– "damped" version of Gauss-Newton:

$$(2J_F(x_k)^T J_F(x_k) + \lambda \cdot I) \cdot (x_k - x_{k+1}) = \nabla f(x_k)$$

Tikhonov regularization

– The damping factor λ is adjusted in each iteration ensuring:

$$f(x_k) > f(x_{k+1})$$

- if not fulfilled increase λ
- \rightarrow Trust region

 \rightarrow "Interpolation" between Gauss-Newton (small λ) and Gradient Descent (large λ)

Non-Linear Least Squares: Levenberg-Marquardt

- Levenberg-Marquardt (LM)
 - Extension of Levenberg:

 $(2J_F(x_k)^T J_F(x_k) + \lambda \cdot diag(J_F(x_k)^T J_F(x_k))) \cdot (x_k - x_{k+1}) = \nabla f(x_k)$

- Idea: Instead of a plain Gradient Descent for large λ , scale each component of the gradient according to the curvature.
 - Avoids slow convergence in components with a small gradient

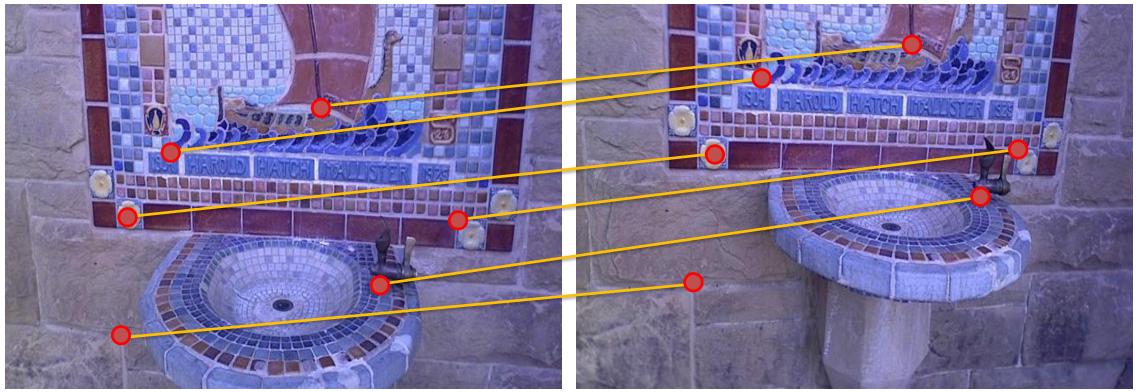
Non-Linear Least Squares: BFGS / L-BFGS

- BFGS (Broyden-Fletcher-Goldfarb-Shanno)
 - Quasi-Newton method

$$\underline{B_k} \cdot (x_k - x_{k+1}) = \nabla f(x_k)$$

- Approximation of the Hessian using rank-1 updates in each iteration: $B_{k+1} = B_k + \alpha \cdot uu^T + \beta \cdot vv^T$
- In practice, instead of approximating B_k , directly approximate B_k^{-1}
- L-BFGS (Limited-memory BFGS)
 - Approximation of BFGS

Back to 3D Reconstruction

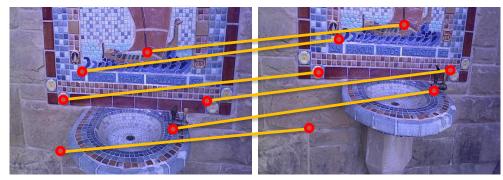


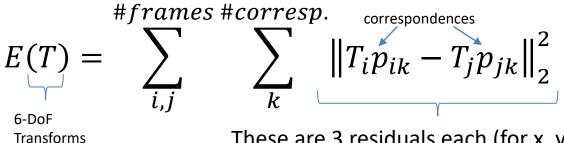
#frames #corresp.

$$E_{keypoint}(T) = \sum_{i,j} \sum_{k} \left\| T_i p_{ik} - T_j p_{jk} \right\|_2^2$$

Back to 3D Reconstruction

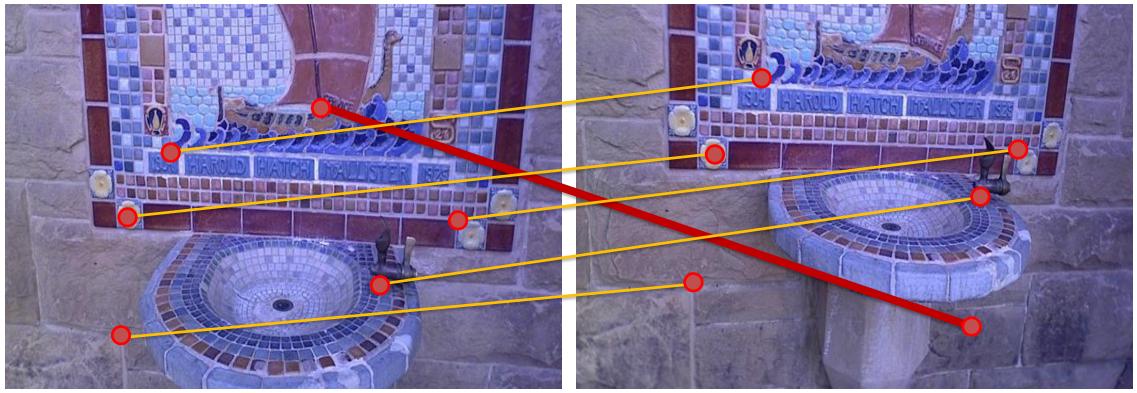
- Important: Don't merge residuals!
 - 2-Norm notation might be misleading





These are 3 residuals each (for x, y, z)! -> also 3 rows each in the Jaccobian

Handling Outliers

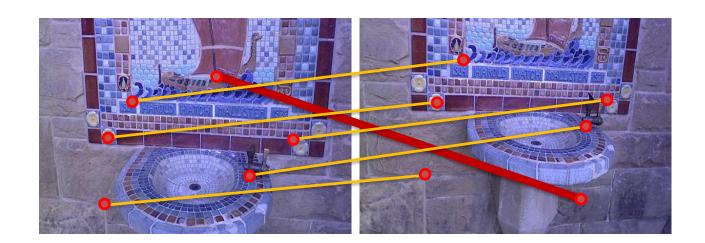


#frames #corresp.

$$E_{keypoint}(T) = \sum_{i,j} \sum_{k} \left\| T_i p_{ik} - T_j p_{jk} \right\|_2^2$$

Handling Outliers: Robust Optimization

- RANSAC (essentially trial and error)
- Lifting Schemes:
 - Good results
 - Costly to optimize
- Robust norms:
 - L-1
 - p-Norms
 - Huber Norm



Robust Optimization: Lifting Schemes

- $f(x) = \sum r_i(x)^2$
 - A single outliers kills the energy due to quadratic terms...
 - Introduce helper weights to weigh down outliers
 - Use regularization term to avoid trivial solution

•
$$f_{robust}(x,w) = \sum w_i^2 r_i(x)^2 + \lambda_{reg} \sum (1-w^2)^2$$

Many alternatives for 'lifting kernel'

– Ideally, at the end of opt. all outliers are w = 0, inliers w = 1

Iteratively Reweighted Least Squares (IRLS)

• $f(x) = \sum |r_i(x)|^p$

•
$$x^* = \underset{x}{\operatorname{argmin}} f(x) = \underset{x}{\operatorname{argmin}} \left| \left| F(x) \right| \right|_p^p$$

• Map to L2 problem for each iteration

• Iteratively solve $f(x) = \sum w_i r_i(x)^2$ and $w_i = |r_i(x)|^{p-2}$

Fixed for the current iteration

Local vs Global Minima?

Convexification

- Make energy landscape smoother and convex!
 - Smoothing
 - Coarse-to-fine strategies over unknowns
 - Coarse-to-fine strategies over residuals

RGB-alignment is good example!

Performance / Efficiency Considerations

• Jacobian:
$$J_F(x) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1} & \cdots & \frac{\partial F_m}{\partial x_n} \end{bmatrix}$$

Gauss-Newton:

$$2(J_F(x_k)^T J_F(x_k)(x_k - x_{k+1}) = \nabla f(x_k)$$

PCGStep1 Kernel	
$\mathbf{g}_k = 2\mathbf{J}^T \mathbf{J} \mathbf{p}_k$	applyJTJ()
$\alpha_{d_k} = \text{reduce}(\mathbf{p}_k^T(\mathbf{g}_k))$	

How to apply JTJ?

(JTJ)p vs. JT(Jp)

3D Scanning & Motion Capture Prof. Nießner

Sparsity of J

How many unknowns?

ullet

۲

•

How many residuals?

Computing Derivatives

• Numeric Derivatives

• Automatic Differentiation

• Symbolic Differentiation

Numeric Derivatives

•
$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• Forward Differences

$$\frac{df(x)}{dx} \approx \frac{f(x+h) - f(x)}{h}$$

Central Differences

$$\frac{df(x)}{dx} \approx \frac{f(x+h) - f(x-h)}{2h}$$

- Easy to implement -> good for debugging
- Slow and numerically unstable

Automatic Differentiation: Dual Numbers

- $f(x) = x^2$
- Choose infinitesimal unit e, such that $e \neq 0$ but $e^2 = 0$

- Dual number (similar to complex numbers)

• $f(10 + e) = (10 + e)^2 =$ $100 + 2 \cdot 10 \cdot e + e^2 =$ $100 + 20 \cdot e$ This is zero This is $\frac{df}{dx}$

Try it out!

Automatic Differentiation: Dual Numbers ('Jets')

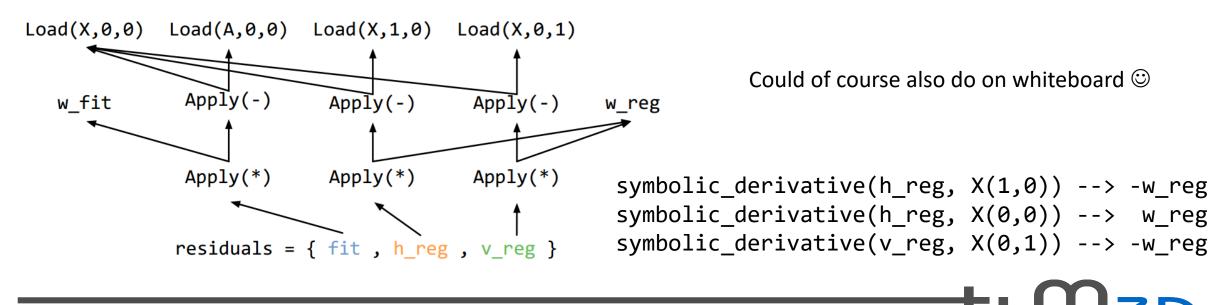
```
template <typename T, int N>
struct Jet {
```

```
...
template<typename T, int N> inline
    Jet<T, N> operator*(const Jet<T, N>& f, const Jet<T, N>& g) {
    Jet<T, N> h;
    h.a = f.a * g.a;
    h.v = f.a * g.v + f.v * g.a;
    return h;
}
T a; // The scalar part.
Eigen::Matrix<T, N, 1> v; // The infinitesimal part.
```

};

Symbolic Differentiation

- For instance, D* [Guenter 07]
- Analyze compute graph at compile time!
 - Can simplify / fuse terms efficiently
 - Optimal solution is NP-Complete (but many heuristics)

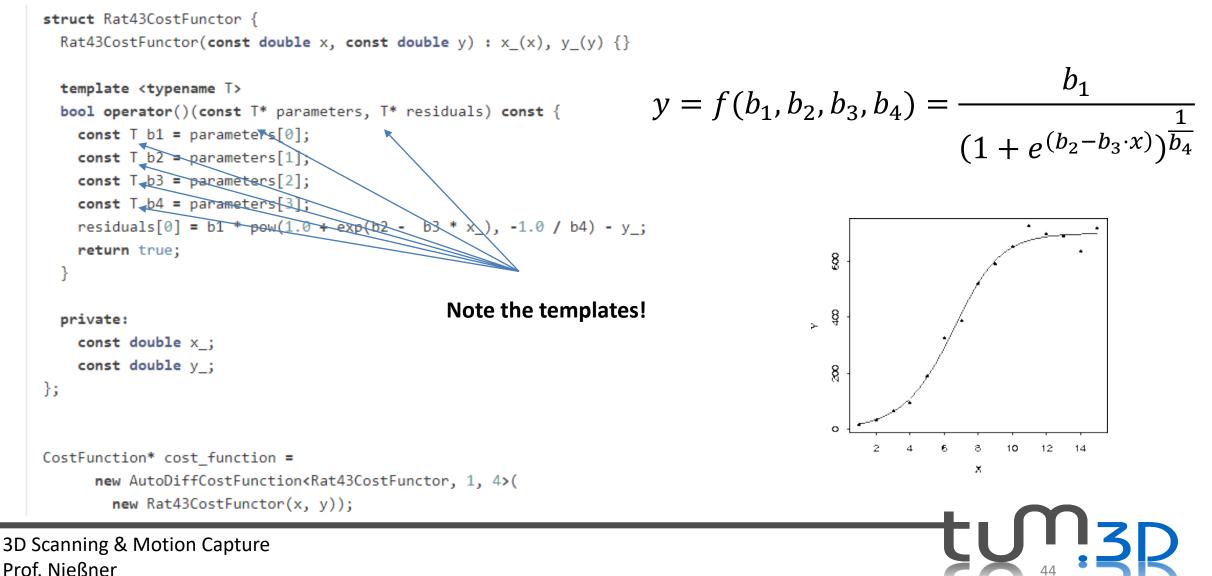


Non-linear Solvers

• Ceres

- Uses Eigen as backend for linear solves (has also its own PCG)
- Automatic differentiation using dual numbers ("jet.h")
- Alglib
 - Numerical differentiation or hand-provided
- Symbolic solvers
 - Maple
 - Good for derivations
 - Not so great simplification / code conversion

Introduction to Ceres



Connection to Deep Learning

- Deep Learning uses stochastic Gradient Descent
- Backpropagation
- But no second order solvers
- True gradient is hard to compute for large training sets
 - Needs stochasticity
 - There is also theory why that helps with local minima
 - Theory: many local minima are equivalent in performance even though weights are different
- Stochasticity does not seem to well with 2nd order solvers
 - There are attempts... don't seem to work so well

Connection to Deep Learning

- Operate on compute graphs
- Backpropagation of applying the chain rule
 - Keep track of derivatives
- Deep Learning frameworks typically support autodiff
 - E.g., Autograd in torch
 - I.e., implement only forward pass in layer, autodiff does the rest

Connections to Other Optimizations

- Hard- and inequality constraints
 - Lagrange multipliers
 - ADMM (Alternating Direction Method of Multipliers)
 - PD (Primal Dual)
- Gradient-free methods:
 - Monte-Carlo Methods
 - Metropolis Hastings
 - Genetic and evolutional solvers
- Differential equations

How do we solve these non-linear terms?

• Bundle Adjustment or RGB-D Bundling

$$E_{re-proj}(\boldsymbol{T},\boldsymbol{X}) = \sum_{i=1}^{m} \sum_{j=1}^{n} \left| \left| x_{ij} - \pi_i \left(T_i \cdot X_j \right) \right| \right|_2^2$$

$$E_{keypoint}(T) = \sum_{i,j}^{\#frames \ \#corresp.} \sum_{k} \left\| T_i p_{ik} - T_j p_{jk} \right\|_2^2$$

How do we solve these non-linear terms?

• Frame-to-frame alignment (RGB-D case)

•
$$E_{frame-to-frame}(T) = \sum_{k} \left\| p_{ik} - T p_{jk} \right\|_{2}^{2}$$

How to align two RGB-D frames?
 – ICP!

Administrative

- Reading Homework:
 - Ceres Documentation: <u>http://ceres-solver.org/automatic_derivatives.html</u>
 - Research on RANSAC for correspondence finding
- Next week:
 - Rigid Surface Tracking & Reconstruction

Administrative

See you next week!

