
3D Scanning & Motion Capture

Prof. Matthias Nießner

Optimization Methods for 3D Reconstruction

1

3D Scanning & Motion Capture
Prof. Nießner

Last Lecture: How to obtain “3D”?

2

3D Scanning & Motion Capture
Prof. Nießner

Last Lecture: Surface Representations
• Point Clouds

• Parametric Surfaces

• Voxels

• Implicit Surfaces

• Polygonal Meshes

3

3D Scanning & Motion Capture
Prof. Nießner

Last Lecture: Surface Representations
• Important Algorithms

– Marching Cubes

– Ray cast

Ray Casting

3D Scanning & Motion Capture
Prof. Nießner

Last Lecture: Correspondence Finding / Matching

5

3D Scanning & Motion Capture
Prof. Nießner

Last Lecture: Correspondence Finding / Matching

6

3D Scanning & Motion Capture
Prof. Nießner

Last Lecture: Bundle Adjustment (SfM)
• Re-projection error

𝐸(𝑇𝑙𝑒𝑓𝑡, 𝑇𝑟𝑖𝑔ℎ𝑡, 𝑋) = 𝑥1 − 𝜋𝑙𝑒𝑓𝑡 𝑇𝑙𝑒𝑓𝑡 ⋅ 𝑋
2

2
+ 𝑥2 − 𝜋𝑟𝑖𝑔ℎ𝑡 𝑇𝑟𝑖𝑔ℎ𝑡 ⋅ 𝑋

2

2

𝜋𝑓𝑥,𝑓𝑦,𝑚𝑥,𝑚𝑦

𝑥
𝑦
𝑧

=
𝑥 ⋅

𝑓𝑥
𝑧
+𝑚𝑥

𝑦 ⋅
𝑓𝑦

𝑧
+ 𝑚𝑦

→
𝑢
𝑣

3D-2D proj
(intrinsics)

frame pose
(extrinsics)

𝑇 𝛼, 𝛽, 𝛾, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧 =

𝑅00 𝑅01 𝑅02 𝑡𝑥
𝑅10 𝑅11 𝑅12 𝑡𝑦
𝑅20 𝑅21 𝑅22 𝑡𝑧
0 0 0 1

7

3D Scanning & Motion Capture
Prof. Nießner

Last Lecture: Bundle Adjustment (SfM)

• 𝑚 images

• 𝑛 points in 3d

• 𝐸𝑟𝑒−𝑝𝑟𝑜𝑗 𝑻, 𝑿 =

σ𝑖=1
𝑚 σ𝑗=1

𝑛 𝑥𝑖𝑗 − 𝜋𝑖 𝑇𝑖 ⋅ 𝑋𝑗
2

2

over images
over 3d points

2d keypoint
locations

3D-2D proj
(intrinsics)

frame pose
(extrinsics)

3D point

8

3D Scanning & Motion Capture
Prof. Nießner

Last Lecture: RGB-D “Bundling”

𝐸𝑏𝑢𝑛𝑑𝑙𝑒 𝑇 = ෍

𝑖,𝑗

#𝑓𝑟𝑎𝑚𝑒𝑠

෍

𝑘

#𝑐𝑜𝑟𝑟𝑒𝑠𝑝.

𝑇𝑖𝑝𝑖𝑘 − 𝑇𝑗𝑝𝑗𝑘 2

2

𝐸𝑐𝑜𝑙𝑜𝑟(𝑇) = ෍

𝑖,𝑗

#frames

෍

𝑘

#pixels

𝛻𝐼(𝜋𝑐 𝑝𝑘) − 𝛻𝐼(𝜋𝑐 𝑇𝑗
−1𝑇𝑖𝑝𝑘)

2

2

𝐸𝑑𝑒𝑝𝑡ℎ(𝑇) = ෍

𝑖,𝑗

#frames

෍

𝑘

#pixels

𝑝𝑘 − 𝑇𝑖
−1𝑇𝑗𝜋𝑑

−1(𝐷𝑗(𝜋𝑑(𝑇𝑗
−1𝑇𝑖𝑝𝑘))) ⋅ 𝑛𝑘 2

2

9

3D Scanning & Motion Capture
Prof. Nießner

Today: Optimization Methods for 3D
Reconstruction

10

3D Scanning & Motion Capture
Prof. Nießner

How do we solve these non-linear terms?
• Bundle Adjustment or RGB-D Bundling

𝐸𝑟𝑒−𝑝𝑟𝑜𝑗 𝑻,𝑿 = σ𝑖=1
𝑚 σ𝑗=1

𝑛 𝑥𝑖𝑗 − 𝜋𝑖 𝑇𝑖 ⋅ 𝑋𝑗
2

2

𝐸𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡 𝑇 = ෍

𝑖,𝑗

#𝑓𝑟𝑎𝑚𝑒𝑠

෍

𝑘

#𝑐𝑜𝑟𝑟𝑒𝑠𝑝.

𝑇𝑖𝑝𝑖𝑘 − 𝑇𝑗𝑝𝑗𝑘 2

2

11

3D Scanning & Motion Capture
Prof. Nießner

Least Squares
• Find solution that minimizes the sum of squared residuals

– 𝑓 𝑥 = σ𝑟𝑖 𝑥
2

– 𝑓 𝑥 = 𝐹 𝑥
2

2
, 𝐹 𝑥 = 𝑟1 𝑥 , 𝑟2 𝑥 ,… , 𝑟𝑛 𝑥 𝑇

– 𝑥∗ = argmin
𝑥

𝑓 𝑥 = argmin
𝑥

𝐹 𝑥
2

2

– 𝑓 𝑥 =

𝑟1 𝑥

𝑟2 𝑥
⋮

𝑟𝑛(𝑥) 2

2

12

3D Scanning & Motion Capture
Prof. Nießner

Linear Least Squares
• Linear function: 𝑦 = 𝑚 ⋅ 𝑥 + 𝑡

– Solve for 𝑚, 𝑡

• 𝑟𝑖 𝑚, 𝑡 = 𝑦𝑖 − (𝑚 ⋅ 𝑥𝑖 + 𝑡)

13

3D Scanning & Motion Capture
Prof. Nießner

Linear Least Squares
• 𝑟𝑖 𝑚, 𝑡 = 𝑦𝑖 − (𝑚 ⋅ 𝑥𝑖 + 𝑡)

• 𝑥𝑖 =

1
2
3
4

, 𝑦𝑖 =

6
5
7
10

• 𝐴 =

1 1
2 1
3 1
4 1

, 𝑏 =

6
5
7
10

• 𝐴𝑥 = 𝑏 (over determined)

• Solve via normal equation 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏

• 𝐴𝑇𝐴 =
30 10
28 4

𝐴𝑇𝑏 =
77
28

• Solve:
30 10
28 4

𝑚
𝑡

=
77
28

->
𝑚
𝑡

=
3.5
1.4

14

3D Scanning & Motion Capture
Prof. Nießner

Linear Least Squares
• Quadratic function: 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

– Solve for 𝑎, 𝑏, 𝑐
– Linear with respect to 𝑎, 𝑏, 𝑐

• 𝑟𝑖 𝑎, 𝑏, 𝑐 = 𝑦𝑖 − (𝑎𝑥2 + 𝑏𝑥 + 𝑐)

• 𝐴 =

1 1 1
4 2 1
9 3 1
16 4 1

, 𝑏 =

6
5
7
10

• 𝐴𝑥 = 𝑏 (over determined)
• Solve via normal equation 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏

15

3D Scanning & Motion Capture
Prof. Nießner

Linear Least Squares
• Solve Normal Equation: 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏

– Compute Matrix Inverse?
– Gradient descent?

• Linear Solve (iterative):
– Jacobi Iteration
– Gauss-Seidel Iteration
– Conjugate Gradient Descent

• Linear Solve (direct):
– QR-, LU-Decomposition
– Cholesky Decomposition
– SVD
– …

Hard to write a good solver yourself
- Numerical stability
- Scalability
- Efficiency (look at Eigen for template magic)

16

3D Scanning & Motion Capture
Prof. Nießner

Linear Solvers
• Eigen: http://eigen.tuxfamily.org/index.php?title=Main_Page

– Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and
related algorithms.

• Taucs: http://www.tau.ac.il/~stoledo/taucs/
– TAUCS is a C library of sparse linear solvers.

• Umfpack
– UMFPACK is a set of routines for solving unsymmetric sparse linear systems of the form

Ax=b, using the Unsymmetric MultiFrontal method (Matrix A is not required to be
symmetric)

• cuSPARSE: http://docs.nvidia.com/cuda/cusparse/index.html
– The cuSPARSE library contains a set of basic linear algebra subroutines used for handling

sparse matrices, running on the GPU using Nvidia CUDA

• Many more
– https://en.wikipedia.org/wiki/Comparison_of_linear_algebra_libraries

17

http://eigen.tuxfamily.org/index.php?title=Main_Page
http://www.tau.ac.il/~stoledo/taucs/
http://docs.nvidia.com/cuda/cusparse/index.html
https://en.wikipedia.org/wiki/Comparison_of_linear_algebra_libraries

3D Scanning & Motion Capture
Prof. Nießner

Non-Linear Least Squares
• Find solution that minimizes the sum of squared residuals

– 𝑓 𝑥 = σ𝑟𝑖 𝑥
2

– 𝑟𝑖 non linear with respect to 𝑥

• Ex: Fitting a Gaussian model

• 𝑀 𝑥, 𝑡 = 𝑥1𝑒
− 𝑡−𝑥2

2/ 2𝑥3
2
, 𝑥 =

𝑥1
𝑥2
𝑥3

• Here: 𝑟𝑖 𝑥 = 𝑦𝑖 −𝑀 𝑥, 𝑡𝑖

18

3D Scanning & Motion Capture
Prof. Nießner

Non-Linear Least Squares
• argmin

𝑥
𝑓 𝑥 = 𝐹 𝑥

2

2

Gradient Descent (1st order):
• 𝑥𝑘+1 = 𝑥𝑘 − 𝑡 ⋅ 𝛻𝑓(𝑥𝑘)

Newton’s Method (2nd order):
• 𝑥𝑘+1 = 𝑥𝑘 −𝐻𝑓 𝑥𝑘

−1𝛻𝑓(𝑥𝑘)

19

3D Scanning & Motion Capture
Prof. Nießner

Non-Linear Least Squares: GD
Gradient Descent (1st order):

– 𝑥𝑘+1 = 𝑥𝑘 − 𝑡 ⋅ 𝛻𝑓(𝑥𝑘)

• 𝛻𝑓 𝑥 =

𝜕𝑓

𝜕𝑥1

⋮
𝜕𝑓

𝜕𝑥𝑛

• Need to compute partials

• Need to determine step size
– Line search

– Momentum (i.e., track history)

20

3D Scanning & Motion Capture
Prof. Nießner

Non-Linear Least Squares: Newton (root finding)

21

Root finding: 𝑥𝑘+1 = 𝑥𝑘 −
𝑓 𝑥𝑘

𝑓′(𝑥𝑘)

3D Scanning & Motion Capture
Prof. Nießner

Non-Linear Least Squares: Newton
Newton’s Method (2nd order):

– 𝑥𝑘+1 = 𝑥𝑘 − 𝐻𝑓 𝑥𝑘
−1𝛻𝑓(𝑥𝑘)

• In 1D

– Root finding: 𝑥𝑘+1 = 𝑥𝑘 −
𝑓 𝑥𝑘

𝑓′(𝑥𝑘)

– Optimization (find root of derivative)

𝑥𝑘+1 = 𝑥𝑘 −
𝑓′ 𝑥𝑘

𝑓′′(𝑥𝑘)
Newton (red) uses curvature information,
and takes a more direct path than GD (green)

22

3D Scanning & Motion Capture
Prof. Nießner

Non-Linear Least Squares

• Jacobian: JF(𝑥) =

𝜕𝐹1

𝜕𝑥1
⋯

𝜕𝐹1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝐹𝑚

𝜕𝑥1
⋯

𝜕𝐹𝑚

𝜕𝑥𝑛

btw. 𝛻f x = 2 ⋅ J𝐹 𝑥
𝑇
𝐹(𝑥)

• Hessian: Hf(𝑥) =

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
⋯

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛

𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2 ⋯

𝜕2𝑓

𝜕𝑥2𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥2
⋯

𝜕2𝑓

𝜕𝑥𝑛
2

Hf(x) = J𝛻f 𝑥 T

#r
es

id
u

al
s

#variables

#variables

#v
ar

ia
b

le
s

23

3D Scanning & Motion Capture
Prof. Nießner

Non-Linear Least Squares: Gauss-Newton
• 𝑥𝑘+1 = 𝑥𝑘 −𝐻𝑓 𝑥𝑘

−1𝛻𝑓(𝑥𝑘)

– ’true’ 2nd derivatives are often hard to obtain (e.g., numerics)

– 𝐻𝑓 ≈ 2𝐽𝐹
𝑇𝐽𝐹

• Gauss-Newton (GN):
𝑥𝑘+1 = 𝑥𝑘 − [2𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘]−1𝛻𝑓(𝑥𝑘)

• Solve linear system (again, inverting a matrix is unstable):

2 𝐽𝐹 𝑥𝑘
𝑇𝐽𝐹 𝑥𝑘 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

Solve for delta vector

24

3D Scanning & Motion Capture
Prof. Nießner

Non-Linear Least Squares: Gauss-Newton
• 2 𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘 ⋅ 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

• Solve 𝐴𝑥 = 𝑏

– Could do matrix-free: applyJTJ, evalJTF

𝑿⋅𝑨 𝒃=

25

3D Scanning & Motion Capture
Prof. Nießner

Non-Linear Least Squares: Gauss-Newton

• Solve 𝐴𝑥 = 𝑏

• Common in our research:

– Use Pre-conditioned Conjugate
Gradient Descent (PCG)

– Easy to parallelize; e.g., on GPUs

26

3D Scanning & Motion Capture
Prof. Nießner

Non-Linear Least Squares: Levenberg
• Levenberg

– “damped” version of Gauss-Newton:
2𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘 + 𝜆 ⋅ 𝐼 ⋅ 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

– The damping factor 𝜆 is adjusted in each iteration ensuring:

𝑓 𝑥𝑘 > 𝑓(𝑥𝑘+1)

• if not fulfilled increase 𝜆

Trust region

“Interpolation” between Gauss-Newton (small 𝜆) and Gradient Descent (large 𝜆)

Tikhonov
regularization

27

3D Scanning & Motion Capture
Prof. Nießner

Non-Linear Least Squares: Levenberg-Marquardt
• Levenberg-Marquardt (LM)

– Extension of Levenberg:
2𝐽𝐹 𝑥𝑘

𝑇𝐽𝐹 𝑥𝑘 + 𝜆 ⋅ 𝑑𝑖𝑎𝑔(𝐽𝐹 𝑥𝑘
𝑇𝐽𝐹 𝑥𝑘) ⋅ 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

– Idea: Instead of a plain Gradient Descent for large 𝜆, scale each
component of the gradient according to the curvature.

• Avoids slow convergence in components with a small gradient

28

3D Scanning & Motion Capture
Prof. Nießner

Non-Linear Least Squares: BFGS / L-BFGS
• BFGS (Broyden-Fletcher-Goldfarb-Shanno)

– Quasi-Newton method
𝐵𝑘 ⋅ 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

– Approximation of the Hessian using rank-1 updates in each iteration:
𝐵𝑘+1 = 𝐵𝑘 + 𝛼 ⋅ 𝑢𝑢𝑇 + 𝛽 ⋅ 𝑣𝑣𝑇

– In practice, instead of approximating 𝐵𝑘, directly approximate 𝐵𝑘
−1

• L-BFGS (Limited-memory BFGS)

– Approximation of BFGS

29

3D Scanning & Motion Capture
Prof. Nießner

Back to 3D Reconstruction

𝐸𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡 𝑇 = ෍

𝑖,𝑗

#𝑓𝑟𝑎𝑚𝑒𝑠

෍

𝑘

#𝑐𝑜𝑟𝑟𝑒𝑠𝑝.

𝑇𝑖𝑝𝑖𝑘 − 𝑇𝑗𝑝𝑗𝑘 2

2

30

3D Scanning & Motion Capture
Prof. Nießner

Back to 3D Reconstruction
• Important: Don’t merge residuals!

– 2-Norm notation might be misleading

𝐸 𝑇 = ෍

𝑖,𝑗

#𝑓𝑟𝑎𝑚𝑒𝑠

෍

𝑘

#𝑐𝑜𝑟𝑟𝑒𝑠𝑝.

𝑇𝑖𝑝𝑖𝑘 − 𝑇𝑗𝑝𝑗𝑘 2

2

31

These are 3 residuals each (for x, y, z)!
-> also 3 rows each in the Jaccobian

6-DoF
Transforms

correspondences

3D Scanning & Motion Capture
Prof. Nießner

Handling Outliers

𝐸𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡 𝑇 = ෍

𝑖,𝑗

#𝑓𝑟𝑎𝑚𝑒𝑠

෍

𝑘

#𝑐𝑜𝑟𝑟𝑒𝑠𝑝.

𝑇𝑖𝑝𝑖𝑘 − 𝑇𝑗𝑝𝑗𝑘 2

2

32

3D Scanning & Motion Capture
Prof. Nießner

Handling Outliers: Robust Optimization
• RANSAC (essentially trial and error)

• Lifting Schemes:
– Good results

– Costly to optimize

• Robust norms:
– L-1

– p-Norms

– Huber Norm

33

3D Scanning & Motion Capture
Prof. Nießner

Robust Optimization: Lifting Schemes
• 𝑓 𝑥 = σ𝑟𝑖 𝑥

2

– A single outliers kills the energy due to quadratic terms…

– Introduce helper weights to weigh down outliers

– Use regularization term to avoid trivial solution

• 𝑓𝑟𝑜𝑏𝑢𝑠𝑡 𝑥,𝑤 = σ𝑤𝑖
2𝑟𝑖 𝑥

2 + 𝜆𝑟𝑒𝑔σ 1 − 𝑤2 2

– Ideally, at the end of opt. all outliers are 𝑤 = 0, inliers w = 1

Many alternatives for ‘lifting kernel’

34

3D Scanning & Motion Capture
Prof. Nießner

Iteratively Reweighted Least Squares (IRLS)
• 𝑓 𝑥 = σ|𝑟𝑖 𝑥 |𝑝

• 𝑥∗ = argmin
𝑥

𝑓 𝑥 = argmin
𝑥

𝐹 𝑥
𝑝

𝑝

• Map to L2 problem for each iteration

• Iteratively solve 𝑓 𝑥 = σ𝑤𝑖𝑟𝑖 𝑥
2 and 𝑤𝑖 = |𝑟𝑖 𝑥 |𝑝−2

Fixed for the current iteration

35

3D Scanning & Motion Capture
Prof. Nießner

Local vs Global Minima?

• Convexification

• Make energy landscape smoother and convex!

– Smoothing

– Coarse-to-fine strategies over unknowns

– Coarse-to-fine strategies over residuals

RGB-alignment
is good example!

36

3D Scanning & Motion Capture
Prof. Nießner

Performance / Efficiency Considerations

• Jacobian: JF x =

𝜕𝐹1

𝜕𝑥1
⋯

𝜕𝐹1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝐹𝑚

𝜕𝑥1
⋯

𝜕𝐹𝑚

𝜕𝑥𝑛

• Sparsity of J

• How many unknowns?

• How many residuals?

– Directly affects dimensions of J and JTJ

#r
es

id
u

al
s

#variables

How to apply JTJ?

(JTJ)p vs. JT(Jp)

2 𝐽𝐹 𝑥𝑘
𝑇𝐽𝐹(𝑥𝑘 𝑥𝑘 − 𝑥𝑘+1 = 𝛻𝑓(𝑥𝑘)

Gauss-Newton:

37

3D Scanning & Motion Capture
Prof. Nießner

Computing Derivatives

• Numeric Derivatives

• Automatic Differentiation

• Symbolic Differentiation

38

3D Scanning & Motion Capture
Prof. Nießner

Numeric Derivatives
•

𝑑𝑓 𝑥

𝑑𝑥
= lim

ℎ→0

𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ

• Forward Differences
𝑑𝑓 𝑥

𝑑𝑥
≈

𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ

• Central Differences
𝑑𝑓 𝑥

𝑑𝑥
≈

𝑓 𝑥+ℎ −𝑓(𝑥−ℎ)

2ℎ

• Easy to implement -> good for debugging
• Slow and numerically unstable

39

3D Scanning & Motion Capture
Prof. Nießner

Automatic Differentiation: Dual Numbers
• 𝑓 𝑥 = 𝑥2

• Choose infinitesimal unit 𝑒, such that 𝑒 ≠ 0 but 𝑒2 = 0

– Dual number (similar to complex numbers)

• 𝑓(10 + 𝑒) = 10 + 𝑒 2 =
100 + 2 ⋅ 10 ⋅ 𝑒 + 𝑒2 =
100 + 20 ⋅ 𝑒

This is zero

This is
𝑑𝑓

𝑑𝑥

Try it out!

40

3D Scanning & Motion Capture
Prof. Nießner

Automatic Differentiation: Dual Numbers (‘Jets’)
template <typename T, int N>
struct Jet {

…
template<typename T, int N> inline

Jet<T, N> operator*(const Jet<T, N>& f, const Jet<T, N>& g) {
Jet<T, N> h;
h.a = f.a * g.a;
h.v = f.a * g.v + f.v * g.a;
return h;

}
T a; // The scalar part.
Eigen::Matrix<T, N, 1> v; // The infinitesimal part.

};

41

3D Scanning & Motion Capture
Prof. Nießner

Symbolic Differentiation
• For instance, D* [Guenter 07]

• Analyze compute graph at compile time!

– Can simplify / fuse terms efficiently

– Optimal solution is NP-Complete (but many heuristics)

symbolic_derivative(h_reg, X(1,0)) --> -w_reg
symbolic_derivative(h_reg, X(0,0)) --> w_reg
symbolic_derivative(v_reg, X(0,1)) --> -w_reg

Could of course also do on whiteboard 

42

3D Scanning & Motion Capture
Prof. Nießner

Non-linear Solvers
• Ceres

– Uses Eigen as backend for linear solves (has also its own PCG)
– Automatic differentiation using dual numbers (“jet.h”)

• Alglib
– Numerical differentiation or hand-provided

• Symbolic solvers
– Maple

• Good for derivations
• Not so great simplification / code conversion

43

3D Scanning & Motion Capture
Prof. Nießner

Introduction to Ceres

𝑦 = 𝑓(𝑏1, 𝑏2, 𝑏3, 𝑏4) =
𝑏1

1 + 𝑒 𝑏2−𝑏3⋅𝑥
1
𝑏4

Note the templates!

44

3D Scanning & Motion Capture
Prof. Nießner

Connection to Deep Learning
• Deep Learning uses stochastic Gradient Descent
• Backpropagation
• But no second order solvers

• True gradient is hard to compute for large training sets
– Needs stochasticity
– There is also theory why that helps with local minima

• Theory: many local minima are equivalent in performance even though weights are
different

• Stochasticity does not seem to well with 2nd order solvers
– There are attempts… don’t seem to work so well

45

3D Scanning & Motion Capture
Prof. Nießner

Connection to Deep Learning

• Operate on compute graphs

• Backpropagation of applying the chain rule
– Keep track of derivatives

• Deep Learning frameworks typically support autodiff
– E.g., Autograd in torch

– I.e., implement only forward pass in layer, autodiff does the rest

46

3D Scanning & Motion Capture
Prof. Nießner

Connections to Other Optimizations
• Hard- and inequality constraints

– Lagrange multipliers

– ADMM (Alternating Direction Method of Multipliers)

– PD (Primal Dual)

• Gradient-free methods:

– Monte-Carlo Methods

– Metropolis Hastings

– Genetic and evolutional solvers

• Differential equations

47

3D Scanning & Motion Capture
Prof. Nießner

How do we solve these non-linear terms?
• Bundle Adjustment or RGB-D Bundling

𝐸𝑟𝑒−𝑝𝑟𝑜𝑗 𝑻,𝑿 = σ𝑖=1
𝑚 σ𝑗=1

𝑛 𝑥𝑖𝑗 − 𝜋𝑖 𝑇𝑖 ⋅ 𝑋𝑗
2

2

𝐸𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡 𝑇 = ෍

𝑖,𝑗

#𝑓𝑟𝑎𝑚𝑒𝑠

෍

𝑘

#𝑐𝑜𝑟𝑟𝑒𝑠𝑝.

𝑇𝑖𝑝𝑖𝑘 − 𝑇𝑗𝑝𝑗𝑘 2

2

48

3D Scanning & Motion Capture
Prof. Nießner

How do we solve these non-linear terms?

• Frame-to-frame alignment (RGB-D case)

• 𝐸𝑓𝑟𝑎𝑚𝑒−𝑡𝑜−𝑓𝑟𝑎𝑚𝑒 𝑇 = σ𝑘 𝑝𝑖𝑘 − 𝑇𝑝𝑗𝑘 2

2

• How to align two RGB-D frames?

– ICP!

49

3D Scanning & Motion Capture
Prof. Nießner

Administrative

• Reading Homework:

– Ceres Documentation: http://ceres-solver.org/automatic_derivatives.html

– Research on RANSAC for correspondence finding

• Next week:

– Rigid Surface Tracking & Reconstruction

http://ceres-solver.org/automatic_derivatives.html

3D Scanning & Motion Capture
Prof. Nießner

Administrative

See you next week!

