## 3D Scanning & Motion Capture Overview of 3D reconstruction methods

#### Prof. Matthias Nießner



#### Last Lecture: How to obtain "3D"?







Velodyne



## Last Lecture: Surface Representations

• Point Clouds



Voxels



Polygonal Meshes



- Parametric Surfaces
- Implicit Surfaces







## Last Lecture: Surface Representations

- Important Algorithms
  - Marching Cubes
  - Ray cast





## Today: Overview of 3D reconstruction methods



## **Overview: 3D Reconstruction Methods**

- Single Image (extremely ill-posed problem)
  - Prior-based (lots of learning methods)
  - Shape from Shading
- Multiple Images
  - Multiple camera setup
  - Video stream from one camera
- Depth Cameras
  - Active / passive
  - Real-time vs offline
  - Etc.



## **Overview: 3D Reconstruction Methods**

 As we have seen for range sensing devices, we always need two optical centers (either two cameras, or one-proj-one-cam setups) in order to obtain actual depth data



ţŴŝB

- Calibrated multi-view setup
  - Given intrinsics of each cam
  - Given extrinsics (between them)

- RGB stream / camera
- Need object segmentation



3D Scanning & Motion Capture Prof. Nießner

[Kutulakos and Seitz 00] A theory of shape by space carving



3D Scanning & Motion Capture Prof. Nießner

[Kutulakos and Seitz 00] A theory of shape by space carving



3D Scanning & Motion Capture Prof. Nießner

[Kutulakos and Seitz 00] A theory of shape by space carving



3D Scanning & Motion Capture Prof. Nießner

[Loop et al. 2013] Real-time high-resolution sparse...



Can apply various smoothing kernels to improve quality





3D Scanning & Motion Capture Prof. Nießner

[Loop et al. 2013] Real-time high-resolution sparse...

## Space Carving with Depth

• Could do with depth data as well

Need to 'fuse' data from views Need to somehow handle noise -> very challenging in practice



## Visual Hull / Space Carving

- Requires calibrated setups
- Background <-> foreground segmentation
- Not very robust to noise
- Good for conceptual understanding







ţŴŝB



SfM: Recover both 3D points and camera positions

- Take set of images
- Detect key points in each image
- Find correspondences between images (i.e., match key points)

- Each image  $I_i$  has a transformation  $T_i$ 
  - Given all matches, jointly solve for  $T_i$  and 3D location of points  $X_i$

## **SfM: Keypoint Detection**



- Harris corner detector
- FAST corner detector
- Shi-Tomasi corner detector
- SIFT Detector

## **SfM: Keypoint Detection**

• FAST keypoint detector



 $\geq 12$  contiguous pixels brighter than p + thresh



## SfM: Keypoint Detection

• Harris Corner Detector  $E(u, v) = \sum_{v \in V} w(x, y)$ 

$$E(u, v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} \quad \lambda_2$$
$$M = \sum_{x,y} w(x, y) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix}$$

$$R = det(M) - k(trace(M))^2$$

|R| small -> region is flat ( $\lambda_1, \lambda_2$  are small) R < 0 -> region is edge ( $\lambda_1 \gg \lambda_2$ ) R is large -> corner ( $\lambda_1, \lambda_2$  are both large)















• Features establish matches



Same point seen from many views

- What are features?
  - Typically around key points
  - Maps high-dim space -> low(er)-dim
  - Easy comparison in feature space
- E.g., take  $f: 256^2 \rightarrow 128$ 
  - Distance between two features could be  $L_2$ : 128-dimensional dot product

Naïve Feature

$$SSD(u,v) = \sum_{(u,v)} \left( I_{left}(i,j) - I_{right}(i,j) \right)^2$$





- Properties of good features
  - Fast comparisons;
    e.g., L<sub>2</sub> in desc-space
    -> could build Kd-Tree
  - Scale invariant
  - View invariant
  - Lighting invariant



- Feature descriptors for matching:
  - SIFT
  - SURF
  - ORB
  - FREAK
  - Use machine learning 😳
    - MatchNet, LIFT, or 3DMatch (in 3D).





- SIFT (Scale-Invariant Feature Transform)
  - Difference of Gaussians
  - Neighborhood is divided in 16 sub-blocks
  - 8-bin orientation histograms
  - 128-dimensional
  - Matching: dot product
    between feature vectors
  - Quite costly to compute...



 Learning Features with DeepLearning (ConvNets)





 Learning Features with DeepLearning (ConvNets)

| SURF                              | 46.8% |
|-----------------------------------|-------|
| SIFT                              | 37.8% |
| ResNet-50 w/ Matterport3D         | 10.6% |
| ResNet-50 w/ SUN3D                | 10.5% |
| ResNet-50 w/ Matterport3D + SUN3D | 9.2%  |

Table 1: **Keypoint matching results.** Error (%) at 95% recall on ground truth correspondences from the SUN3D testing scenes. We see an improvement in performance from pretraining on Matterport3D.











- *m* images  $\bullet$
- n points in 3d

over images over 3d points frame pose 2d keypoint 3D-2D proj (extrinsics) locations (intrinsics)



- *m* images *n* points in 3d
- Number of unknowns
  - $-6 \cdot (m-1)$  for poses; ( $T_1 = ID$ )
  - $-3 \cdot n$  for points
  - Possibly intrinsics (per camera or global)
- Number of constraints:
  - $-2 \cdot m \cdot n$  (constraints are in 2D)

 $E_{re-proj}(\boldsymbol{T},\boldsymbol{X}) =$  $\sum_{i=1}^{m} \sum_{j=1}^{n} \left\| \left| x_{ij} - \pi_i \left( T_i \cdot X_j \right) \right\|_2^2$ 

Between two (intnr. calibrated) images: Need at least 6 correspondences (also must not be linearly dependent)

• Under-constrained vs over-constrained?

- Make sure  $2 \cdot m \cdot n \ge 6 \cdot (m-1) + 3 \cdot n + ('intrinsics')$ 

- Bottom line... we only obtain a sparse point cloud
- It's also slow 🙂

- Key challenges:
  - Find good feature matches
  - Find good initialization for optimization



## SfM: Bundler



3D Scanning & Motion Capture Prof. Nießner

[Snavely et al. 10] <u>http://www.cs.cornell.edu/~snavely/bundler/</u>



#### SfM Applications [Enquvist et al. 11]

# Take a lot of images of an object.

<u>N</u>3R

3D Scanning & Motio Prof. Nießner

#### SfM Applications: Building Rome in a Day

3D Scanning & Motion Capture Prof. Nießner

[Snavely et al. 11] Building Rome in a Day

## SfM Applications: Building Rome in a Day



Dubrovnik, Croatia. (aka King's Landing) 4,619 images (out of an initial 57,845). Total reconstruction time: 23 hours Number of cores: 352

3D Scanning & Motion Capture Prof. Nießner

[Snavely et al. 11] Building Rome in a Day

#### SfM Applications: Photo Tourism



3D Scanning & Motion Capture Prof. Nießner

[Snavely et al. 06] Photo Tourism

#### SfM Applications: Hyperlapse



3D Scanning & Motion Capture Prof. Nießner

[Kopf et al. 14] First-person Hyperlapse

## Multi-view Stereo (MVS)

- Take results of SfM
  - 6DoF Poses of images
  - Estimated 3D points (i.e., sparse point cloud)

- Aim to estimate dense surface (i.e., not only at keypoints)
- Many variations with semi-dense, etc.
- Often name ambiguity: Dense Photometric (multi-view) Stereo



## Multi-view Stereo (MVS)

- Simple idea: just do dense stereo matching between every frame pair (we have the alignment + intrinsic)
  - Somehow 'vote' for results
- Global optimization:
  - Solve for all disparities simultaneously
  - Can be mapped to a Markov Random Field problem (MRF)
    - Matching cost term and pairwise terms
- Semi-global Matching (SGM) [Hirschmuller 08]
  - Approximate for tractable runtime



## Multi-view Stereo (MVS)

• Goal is to create an as-dense-as-possible point cloud



3D Scanning & Motion Capture Prof. Nießner P

Pixelwise view Selection for Unstructured Multi-view Stereo[Schoenberger et al. 16]

## **Final Reconstruction**

• Use (dense) point cloud as input

- Compute normals (e.g., using PCA)

- Feed into some surface fitting / surface optimization
  - E.g., Poisson Surface Reconstruction [Kazhdan et al. 06/13]

 Texture the resulting surface (e.g., optimize for texture warp on top of surface)

#### Poisson Surface Reconstruction [Kazhdan 06/13]



#### Poisson Surface Reconstruction [Kazhdan 06/13]



## Typical Pipelines: SfM + MVS + Recon

- Pix4D (commercial)
- Agisoft PhotoScan (commercial)
- COLMAP (Schoenberger et al.; open source)

 Point cloud
 Dense cloud
 Surface
 Textured

 Image: Surface
 Image: Surface
 Image: Surface
 Image: Surface

 Image: Surface
 Image: Surface
 Image: Surface
 <t

#### Typical Pipelines: SfM + MVS + Recon





Similar idea than SfM + MVS

Prof. Nießner

- But online; i.e., 'model' is built up incrementally
  - Takes real-time RGB stream (e.g., webcam)
- Typically smaller compute budget
- Often only frame-to-frame tracking (no global optimization)



#### LSD-SLAM: <u>Large-Scale</u> <u>Direct</u> Monocular <u>SLAM</u>

Jakob Engel, Thomas Schöps, Daniel Cremers ECCV 2014, Zurich





30

Pr

LSD-SLAM [Engel et al. 14]



- State-of-the-art SLAM
  - Similar to Bundle Adjustment
  - Extract keyframes (dynamically)
  - BA on local keyframe window
  - Typically ORB features (faster)

- Output
  - Poses + sparse point cloud
  - Various 'semi-dense methods'



LSD-SLAM [Engel et al. 14]

#### **RGB-D** Reconstruction







#### **RGB-D Reconstruction**

- We already have depth data (in real time)!
- Typical approach:
  - Frame-to-frame tracking (or frame-to-model)
  - Accumulate depth data in 'model' (implicit surface rep.)



#### **RGB-D** Reconstruction: KinectFusion





#### **RGB-D Reconstruction: Loop Closure**





#### **RGB-D Reconstruction: Loop Closure**



#### RGB-D "Bundling"



$$E_{bundle}(T) = \sum_{i,j}^{\#frames \ \#corresp.} \sum_{k} \left\| T_i p_{ik} - T_j p_{jk} \right\|_2^2$$

#### RGB-D "Bundling"

$$E_{bundle}(T) = \sum_{i,j}^{\#frames \ \#corresp.} \sum_{k} \left\| T_i p_{ik} - T_j p_{jk} \right\|_2^2$$

$$E_{depth}(T) = \sum_{i,j}^{\text{#frames #pixels}} \sum_{k}^{\text{#pixels}} \left\| \left( p_k - T_i^{-1} T_j \pi_d^{-1} (D_j (\pi_d (T_j^{-1} T_i p_k))) \right) \cdot n_k \right\|_2^2$$

$$E_{color}(T) = \sum_{i,j}^{\text{#frames #pixels}} \sum_{k} \left\| \nabla I(\pi_c(p_k)) - \nabla I(\pi_c(T_j^{-1}T_ip_k)) \right\|_2^2$$

#### Next Lecture: Optimization

• How do we solve these non-linear terms?

$$E_{re-proj}(\boldsymbol{T},\boldsymbol{X}) = \sum_{i=1}^{m} \sum_{j=1}^{n} \left| \left| x_{ij} - \pi_i (T_i \cdot X_j) \right| \right|_2^2$$

$$E_{keypoint}(T) = \sum_{i,j}^{\#frames \ \#corresp.} \left\| T_i p_{ik} - T_j p_{jk} \right\|_2^2$$

#### Some Material

 Excellent Reading list on 3DReconstruction (by Pierre Moulon) <a href="https://github.com/openMVG/awesome\_3DReconstruction\_list">https://github.com/openMVG/awesome\_3DReconstruction\_list</a>



#### Administrative

- Reading Homework:
  - Structure-from-Motion Revisited [Schonberger et al. 16]
  - Run Colmap on toy dataset: <u>https://colmap.github.io/install.html</u>
  - LSD-SLAM: Large-Scale Direct Monocular SLAM
    <u>https://jakobengel.github.io/pdf/engel14eccv.pdf</u>

• Next week:

– Optimization Methods for 3D Reconstruction

#### Administrative

#### See you next week!

