3D Scanning & Motion Capture Surface Representations

Prof. Matthias Nießner

Last Lecture: What is "3D"?

• Point Clouds

• Voxels

Polygonal Meshes

- Parametric Surfaces
- Implicit Surfaces

Last Lecture: How to obtain "3D"?

Velodyne

Today: Surface Representations

Overview

• Polygonal Meshes

• Parametric Surfaces

• Implicit Surfaces

• Explicit Surfaces

Constructive Solid Geometry

Overview

- Polygonal Meshes
- Parametric Surfaces
 Control Polygon
 Control Point

• Implicit Surfaces

• Explicit Surfaces

Constructive Solid Geometry

Piecewise linear approximation of the surface

- Error $O(h^2)$

- Piecewise linear approximation of the surface
 - $\operatorname{Error} O(h^2)$
 - Arbitrary topology

- Piecewise linear approximation of the surface
 - $\operatorname{Error} O(h^2)$
 - Arbitrary topology
 - Adaptive refinement (subdivision)

Loop Subdivision Surface

- Piecewise linear approximation of the surface
 - Error $O(h^2)$
 - Arbitrary topology
 - Adaptive refinement (subdivision)
 - Efficient rendering

Rasterization on modern GPUs is darn fast! E.g., my old 1080 GTX rasters 2-3 mio polygons in 0.2-0.3ms (including textures, etc.)

3D Scanning & Motion Capture Prof. Nießner

A polygonal mesh is a collection of polygons satisfying certain restrictions

- A triangle mesh is called manifold if:
 - The intersection of two triangles is:
 - Empty
 - A common vertex
 - A common edge
 - Edges have
 - One adjacent triangle \rightarrow border edge
 - Two adjacent triangles \rightarrow inner edge
 - For a vertex the adjacent triangles
 - Build a single open fan \rightarrow border vertex
 - Build a single closed fan \rightarrow inner vertex

• Example of **non-manifold** meshes:

Two open fans at one vertex

At one edge

Intersection of triangles Is an entire triangle

- Topology vs. Geometry
 - Topologically equivalent:
 - But different geometry

- Geometrically equivalent:
 - But different topology

- Shared Vertex Data Structure
 - De facto standard for file formats (e.g., OFF, OBJ, STL, PLY, ...)

- Shared Vertex Data Structure
 - Cube.obj

```
v 1.000000 -1.000000 -1.000000
   v 1.000000 -1.000000 1.000000
   v -1.000000 -1.000000 1.000000
 3
   v -1.000000 -1.000000 -1.000000
 4
   v 1.000000 1.000000 -0.999999
 5
   v 0.999999 1.000000 1.000001
 6
   v -1.000000 1.000000 1.000000
   v -1.000000 1.000000 -1.000000
 8
 9
10
       -3
     2
   f
          4
   f
     8
11
          6
   f
12
     -5
        6
          2
   f 6
13
       7
          3
14
   f
     -3
          8
15
   f
      1
        4
          8
16
   f
        2
        8
   f
     -5
17
          6
18
   f
        5
          2
19
   f 2
        6 3
20
   f 4 3 8
21
   f 5 1 8
```


- Shared Vertex Data Structure
 - Cube.ply

ply also support supports binary encoding instead of ASCII

```
ply
   format ascii 1.0
   element vertex 8
 3
   property float x
 4
   property float y
 5
   property float z
 6
   element face 12
   property list uchar uint vertex indices
   end header
 9
   -1.\overline{0}00000 -1.000000 1.000000
   -1.000000 1.000000 1.000000
   -1.000000 \ 1.000000 \ -1.000000
   1.000000 1.000000 1.000000
   1.000000 \ 1.000000 \ -1.000000
   1.000000 - 1.000000 1.000000
   1.000000 - 1.000000 - 1.000000
   -1.000000 -1.000000 -1.000000
   3012
18
19
   3 1 3
20
   3 3 5
   3 0
       7 5
22
   372
23
   3 5 3 1
24
       0 2
25
   3 2
       3 6
   3 4
    3 5 7
28
   3 6
   3 0 5 1
29
```

- Half-Edge Data Structure
 - Easy geometric queries \rightarrow widely used in geometric computations
 - Only manifolds

Prof. Nießner

- Half-Edge Data Structure
 - Easy geometric queries \rightarrow widely used in geometric computations
 - Only manifolds
 - Triangular Meshes \rightarrow Directed Edge Data Structure

Overview

Polygonal Meshes

Parametric Surfaces

• Implicit Surfaces

• Explicit Surfaces

Constructive Solid Geometry

Explicit Surfaces

• Explicit form:

Explicit Surfaces

• Explicit form:

$$f(x, y): \mathbb{R}^2 \to \mathbb{R}$$

• Surface is defined by:

$$S(x,y) = (x,y,f(x,y))$$

- Disadvantages
 - Restricted shapes, e.g., only one height value per (x,y) pair

Explicit Surfaces

• E.g., height fields

Overview

Polygonal Meshes

Parametric Surfaces
 Control Polygon

• Implicit Surfaces

• Explicit Surfaces

Constructive Solid Geometry

– Used in design and construction \rightarrow freeform surfaces

• Example: Bézier Curves & Tensor Product Surface

• Example: Bézier Curves & Tensor Product Surface

• Example: Bézier Curves & Tensor Product Surface

• Example: Bézier Curves & Tensor Product Surface

• Parametric form:

$$f(u,v): \mathbb{R}^2 \to \mathbb{R}^3$$

- Maps a bounded 2D domain to 3D
 - Bézier-, B-Spline, or NURBS surfaces

– Used in design and construction \rightarrow freeform surfaces

Overview

Polygonal Meshes **Implicit Surfaces** Parametric Surfaces Control Polygon **Control Point Constructive Solid Geometry Explicit Surfaces** •

Constructive Solid Geometry

 Surface is defined as the boundary of a solid object that was created by Boolean operations on primitive solids

- Example:

$$0 = (s_1 \cap b_1) - (c_3 \cup (c_1 \cup c_2))$$

- Used in design and construction
 - Hard to model "organic" shapes

Constructive Solid Geometry

3D Scanning & Motion Capture Prof. Nießner

[Du'18] T.Du et al., "InverseCSG: Automatic Conversion of 3D Models to CSG Trees"

Constructive Solid Geometry

3D Scanning & Motion Capture Prof. Nießner

[Du'18] T.Du et al., "InverseCSG: Automatic Conversion of 3D Models to CSG Trees"
Overview

Polygonal Meshes

Parametric Surfaces

• Explicit Surfaces

Constructive Solid Geometry

- Remember, mathematically:
 - Explicit function: f(x) = y
 - Implicit function: $x^2 + y^2 1 = 0$

• [Curless and Levoy], KinectFusion, VoxelHashing, ...

• Implicit form:

$$f(x, y, z): \mathbb{R}^3 \to \mathbb{R}$$

Surface is defined by the level set of the tri-variate scalar function

$$f(x, y, z) = c$$

• Implicit form:

$$f(x, y, z): \mathbb{R}^3 \to \mathbb{R}$$

Surface is defined by the level set of the tri-variate scalar function

$$f(x, y, z) = c$$

• Example: Hesse normal form

$$f(x, y, z) = \left(\begin{pmatrix} x \\ y \\ z \end{pmatrix} - \vec{p} \right) \cdot \vec{n} = 0$$

• Implicit form:

$$f(x, y, z): \mathbb{R}^3 \to \mathbb{R}$$

Surface is defined by the level set of the tri-variate scalar function

$$f(x, y, z) = c$$

• Example: Hesse normal form

$$f(x, y, z) = \left(\begin{pmatrix} x \\ y \\ z \end{pmatrix} - \vec{p} \right) \cdot \vec{n} = 0$$

f is also called **Signed Distance Function** (SDF)

- Examples of such scalar functions f(x, y, z)
 - Density
 - Heat

Used for soft shadows in game engines (e.g., Unreal Engine)

- How to find such a scalar function f(x, y, z)?
 - Given sample points

- How to find such a scalar function f(x, y, z)?
 - Given sample points
 - Find a scalar function that fulfils:
 - f = 0 at the sample points
 - f < 0 inside the object
 - f > 0 outside the object

- How to find such a scalar function f(x, y, z)?
 - Hoppe'92:

$$f(\vec{x}) = (\vec{x} - \vec{p}) \cdot \overrightarrow{n_p}$$

 $ec{p}$ is the closest point to $ec{x}$

[Hoppe'92] H.Hoppe et al., "Surface reconstruction from unorganized points" (SIGGRAPH 92)

• How to find such a scalar function f(x, y, z)?

 $\overrightarrow{n_p}$

 $f(\vec{x})$

– Hoppe'92:

$$f(\vec{x}) = (\vec{x} - \vec{p}) \cdot \overrightarrow{n_p}$$

 $ec{p}$ is the closest point to $ec{x}$

[Hoppe'92] H.Hoppe et al., "Surface reconstruction from unorganized points" (SIGGRAPH 92)

- How to find such a scalar function f(x, y, z)?
 - Hoppe'92:

$$f(\vec{x}) = (\vec{x} - \vec{p}) \cdot \overrightarrow{n_p}$$

 $ec{p}$ is the closest point to $ec{x}$

[Hoppe'92] H.Hoppe et al., "Surface reconstruction from unorganized points" (SIGGRAPH 92)

- How to find such a scalar function f(x, y, z)?
 - Hoppe'92:

$$f(\vec{x}) = (\vec{x} - \vec{p}) \cdot \overrightarrow{n_p}$$

 $ec{p}$ is the closest point to $ec{x}$

- Piecewise linear, defined on the Voronoi diagram of the input
- Discontinuous along Voronoi edges
- Dependent on the input density

[Hoppe'92] H.Hoppe et al., "Surface reconstruction from unorganized points" (SIGGRAPH 92)

Piecewise linear surface approximation.

Piecewise linear surface approximation.

Hoppe'92 is dependent on the input density

- How to find such a scalar function f(x, y, z)?
 - Given sample points
 - Find a scalar function that fulfils:
 - f = 0 at the sample points
 - f < 0 inside the object
 - f > 0 outside the object
 - *f* should be smooth

- How to find such a scalar function f(x, y, z)?
 - Given sample points
 - Find a scalar function that fulfils:
 - f = 0 at the sample points
 - f < 0 inside the object
 - f > 0 outside the object
 - *f* should be smooth

→ Radial Basis Functions (RBF)

[Turk'99] G.Turk et al., "Variational Implicit Surfaces"

• Idea: each complex function can be approximated as the sum of simple scaled and translated kernel functions $\varphi(x)$:

 A Radial Basis Function (RBF), also called a Radial Basis Function Network is defined as sum of translated and scaled kernels and a linear polynomial:

$$f(\vec{x}) = \sum_{i} \alpha_{i} \cdot \varphi_{i}(\vec{x}) + \vec{b} \cdot \vec{x} + d$$

linear term

– Allow for functions of arbitrary complexity!

- complexity increases with the number of used kernel functions

– If basis functions $\varphi_i(x)$ are smooth, $f(\vec{x})$ is smooth as well.

• Radial Basis Functions in 3D:

$$f(\vec{x}) = \sum_{i} \alpha_{i} \cdot \varphi_{i}(\vec{x}) + \vec{b} \cdot \vec{x} + d$$

– Use the biharmonic radial basis function:

$$\varphi_i(\vec{x}) = \|\vec{p_i} - \vec{x}\|^3$$

– Where $\overrightarrow{p_i}$ are the input sample points

$$f(\vec{x}) = \sum_{i} \alpha_{i} \cdot \|\vec{p_{i}} - \vec{x}\|^{3} + \vec{b} \cdot \vec{x} + d$$

[Turk'99] G.Turk et al., "Variational Implicit Surfaces"

• Radial Basis Functions in 3D:

$$f(\vec{x}) = \sum_{i} \alpha_{i} \cdot \varphi_{i}(\vec{x}) + \vec{b} \cdot \vec{x} + d$$

- Use the biharmonic radial basis function:

$$\varphi_i(\vec{x}) = \|\vec{p_i} - \vec{x}\|^3$$

– Where $\overrightarrow{p_i}$ are the input sample points

$$f(\vec{x}) = \sum_{i} \alpha_{i} \cdot \|\vec{p}_{i} - \vec{x}\|^{3} + \vec{\mathbf{b}} \cdot \vec{x} + d$$

unknowns

$$f(\vec{x}) = \sum_{i} \alpha_{i} \cdot \|\vec{p}_{i} - \vec{x}\|^{3} + \vec{b} \cdot \vec{x} + d$$

unknowns

- $f(\vec{x})$ should be zero at the sample points:
 - $-f(\overrightarrow{p_i}) = 0 \rightarrow n$ equations (n: number of sample points)

 \rightarrow Solve system of linear equations: $A\vec{x} = \vec{b}$

- Note: system is **underdetermined** since we have n + 4 unknowns
- Solving the system will result in the trivial result ($\vec{x} = \vec{0}$)

$$f(\vec{x}) = \sum_{i} \alpha_{i} \cdot \|\vec{p}_{i} - \vec{x}\|^{3} + \vec{\mathbf{b}} \cdot \vec{x} + d$$

- $f(\vec{x})$ should be zero at the sample points:
 - $-f(\overrightarrow{p_i}) = 0 \rightarrow n$ equations
- Additional constraints where f is non-zero
 - Normal constraints:

For each sample point add off-surface points by moving the points a little in \pm normal direction.

Set the target distance value of these points to $\pm\epsilon$.

$$f(\vec{x}) = \sum_{i} \alpha_{i} \cdot \|\vec{p}_{i} - \vec{x}\|^{3} + \vec{b} \cdot \vec{x} + d$$

$$\overrightarrow{p}_{i} = \begin{pmatrix} p_{i,x} \\ p_{i,y} \\ p_{i,y} \end{pmatrix}$$
on surface
$$\left[\begin{bmatrix} \varphi_{1,1} & \cdots & \varphi_{1,n} & p_{1,x} & p_{1,y} & p_{1,z} & 1 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \varphi_{n,1} & \cdots & \varphi_{n,n} & p_{n,x} & p_{n,y} & p_{n,z} & 1 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \varphi_{n,1} & \cdots & \varphi_{n,n} & q_{n,x} & q_{n,y} & q_{n,z} & 1 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \varphi_{n,1} & \cdots & \varphi_{n,n} & q_{n,x} & q_{n,y} & q_{n,z} & 1 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \varphi_{i,j} = \|\vec{p}_{i} - \vec{p}_{j}\|^{3}$$

$$A \quad \cdot \vec{x} = \vec{b}$$

Note: System is **overdetermined**! \rightarrow use least squares solution $(A^T A \cdot \vec{x} = A^T \vec{b})$

Hoppe

- Local method
- Fast and easy to implement
- Cannot handle noise, outliers, large holes

RBF

- Global method
- Requires solving a linear system (slow)
- Can only handle small point sets
- Can handle noise, outliers

- Find a compromise between local and global fitting
- Fit point cloud in a coarse-to-fine manner
- Segment point cloud into parts, fit individually

- Examples of further methods:
 - RBF with floating centers
 - Reduce number of RBF centers
 - Also optimize for the center positions \rightarrow non-linear
 - [Süßmuth'10] J.Süßmuth "Surface Reconstruction based on Hierarchical Floating Radial Basis Functions"
 - Poisson Reconstruction
 - [Kazhdan'06] M.Kazhdan "Poisson Surface Reconstruction"

- Ray Marching
 - Fixed step length
 - Linear Interpolation, if zero crossing occurs

- Sphere Tracing
 - Dynamic step length
 - Stop if distance is below a threshold

- Convert the iso-surface to polygonal mesh
 - Easy to render
 - Can be used by other post processing pipelines

Marching Squares (2D)

- Converts an iso-line of a bi-variat scalar function to a polygon
 - Given: A uniform sampling (on a 2D grid) of the implicit function
 - For every grid cell determine the zero crossings
 - There are $2^4 = 16$ possible combinations

Marching Squares (2D)

- Converts an iso-line of a bi-variat scalar function to a polygon
 - Given: A uniform sampling (on a 2D grid) of the implicit function
 - For every grid cell determine the zero crossings
 - There are $2^4 = 16$ possible combinations

Marching Squares (2D)

- Converts an iso-line of a bi-variat scalar function to a polygon
 - Given: A uniform sampling (on a 2D grid) of the implicit function
 - For every grid cell determine the zero crossings
 - There are $2^4 = 16$ possible combinations

Marching Squares (2D)

- Converts an iso-line of a bi-variat scalar function to a polygon
 - Given: A uniform sampling (on a 2D grid) of the implicit function
 - For every grid cell determine the zero crossings
 - There are $2^4 = 16$ possible combinations

Marching Cubes (3D)

- Converts an iso-surface of a tri-variat scalar function to a polygonal mesh
 - Given: A uniform sampling (on a 3D grid) of the implicit function
 - For every grid cell determine the zero crossings
 - There are $2^8 = 256$ possible combinations
 - Use lookup table to find triangulation
 - Adjust vertex position according to linear interpolation

[Lorensen'87] W.Lorensen et al., "Marching cubes: A high resolution 3D surface construction algorithm"

3D Scanning & Motion Capture Prof. Nießner

Marching Cubes (3D)

• Lookup table:

Marching Cubes table

• Linear interpolation:

Marching Cubes (3D)

		52	const static int triTable[256][16] =
4		53	{ { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
5		54	$\{ \ 0, \ 8, \ 3, \ -1,$
6		55	$\{0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1$
7	// tables	56	$\{1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1,$
8		57	$\{1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1$
9		58	$\{0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1$
10	// Polygonising a scalar field	59	{ 9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
11	<pre>// Also known as: "3D Contouring", "Marching Cubes", "Surface Reconstruction"</pre>	60	{ 2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1 },
12	// Written by Paul Bourke	61	$\{3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1$
13	13 // May 1994		$\{0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1$
14	<pre>// http://paulbourke.net/geometry/polygonise/</pre>	63	$\{1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1$
15		64	$\{1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1, \},\$
16		65	{ 3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
17	<pre>const static int edgeTable[256] = {</pre>	66	{ 0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1 },
18	0x0, 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c,	67	{ 3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1 },
19	0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00,	68	{ 9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1
20	0x190, 0x99, 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c,	69	$\{4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1$
21	0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90,	70	$\{4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1$
22	0x230, 0x339, 0x33, 0x13a, 0x636, 0x73f, 0x435, 0x53c,	71	$\{0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1$
23	0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30,	72	$\{4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1, \}$
24	0x3a0, 0x2a9, 0x1a3, 0xaa, 0x7a6, 0x6af, 0x5a5, 0x4ac,	73	$\{1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1$
25	0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0,	74	{ 3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1 },
26	0x460, 0x569, 0x663, 0x76a, 0x66, 0x16f, 0x265, 0x36c,	75	$\{9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, \}$
27	0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60,	76	{ 2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1 }.
28	0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff, 0x3f5, 0x2fc,	77	{ 8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
29	0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0,	78	$\{11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1, \}$
30	0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55, 0x15c,	79	{ 9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, },
31	0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950,	80	$\{4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1\}$
32	0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc,	81	$\{3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1, \}$
33	0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0,	82	{ 1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1 }.
34	0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc,	83	{ 4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1 }.
35	0xcc, 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0,	84	$\{4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1\}$
36	0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c,	85	$\{9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1$
-			

-1 },

3D Scanning & Motion Capture <u>https://github.com/angeladai/VirtualScan/blob/master/src/Tables.h</u>

Administrative

Reading Homework:

- Poisson Surface Reconstruction [Kazhdan et al.] <u>https://hhoppe.com/poissonrecon.pdf</u>
- Screened Poisson Surface Reconstruction [Kazhdan and Hoppe] <u>https://www.cs.jhu.edu/~misha/MyPapers/ToG13.pdf</u>

Next week:

- Overview of 3D reconstruction methods

3D Scanning & Motion Capture Prof. Nießner

Administrative

See you next week!

3D Scanning & Motion Capture Prof. Nießner

