3D Scanning & Motion Capture Introduction

Prof. Matthias Nießner

M. Sc. Lukas Höllein, M. Sc. Andrei Burov, M. Sc. Artem Sevastopolsky

Team

Lecturers

Prof. Matthias Nießner

Teaching Assistants

Lukas Höllein

Andrei Burov

Artem Sevastopolsky

• 3D understanding of real-world environments

[Dai et al '17] BundleFusion

• 3D understanding of real-world environments

[Dai et al '17] BundleFusion

• 3D understanding of real-world environments

[Dai et al '17] ScanNet

• 3D understanding of real-world environments

[Dai et al '17] ScanNet

[Dai et al '18] 3DMV

• 3D understanding of real-world environments

High-level Goals

We want to digitize the real world

- For future technologies: Virtual- and Augmented Reality
- At the intersection of vision, graphics, and machine learning

- We often use RGB-D sensors (e.g., the Microsoft Kinect)
- Ultimately, we want use only webcams and phones
- Augment the content creation pipeline!

High-level Goals

• Static 3D reconstruction vs dynamic reconstruction

• Movies vs games

• High-end scanners vs low-end scanners

• Real-time vs offline

Capturing 3D Geometry

3D Scanning & Motion Capture Prof. Nießner

Digital Michelangelo Project [Levoy et al. 00]

Online Reconstruction

Real-Time 3D Model Acquisition

Szymon Rusinkiewicz Olaf Hall-Holt Marc Levoy

3D Scanning & Motion Capture Prof. Nießner

First real-time work [Rusinkiewicz et al. 02]

Large Scale Capture

3D Scanning & Motion Capture Prof. Nießner

Slide Hao Li

Multi-view Stereo

3D Scanning & Motion Capture Prof. Nießner

Lee Perry-Smith, Infinite Realities + Agisoft / Slide Hao Li

USC Light Stage: Fully Body Scanner

3D acquisition

3D Scanning & Motion Capture Prof. Nießner

Slide Hao Li

Motion Capture in Movies

Motion Capture in Movies

Capturing geometry

Capturing geometry

Source: matterport.com

Scene understanding

Personal avatars

Digitalized content

Source: microsoft.com

BundleFusion

[Dai et al '17] BundleFusion

BundleFusion

BundleFusion: Real-time Globally Consistent 3D Reconstruction using Online Surface Re-integration

> Angela Dai¹ Matthias Nießner¹ Michael Zollhöfer² Shahram Izadi³ Christian Theobalt²

¹Stanford University ²Max Planck Institute for Informatics ³Microsoft Research

(contains audio)

ScanNet

3DMV

[Dai et al '18] 3DMV

Shape Completion

Scene Completion

[Dai et al '18] ScanComplete

Scene Completion

3D Scanning & Motion Capture Prof. Nießner [Dai et al '20] SG-NN

3D Semantic Instance Completion

[Hou et al '20] RevealNet

ŢŴŝB

Part-based Understanding of 3D Scans

[Bokhovkin et al '21] Towards Part-Based Understanding of RGB-D Scans

Capturing Colors and Textures

Capturing Colors and Textures

Capturing Colors and Textures

[Dai et al '21] SPSG

Face2Face

[Thies et al '16] Face2Face

Face2Face

Source Actor

Real-time Reenactment

Reenactment Result

3D Scanning & Motion Capture Prof. Nießner

[Thies et al '16] Face2Face

IMU2Face

²Stanford University

3D Scanning & Motic Prof. Nießner

FaceVR: Self-Reenactment for HMD Removal

Input

Gaze-Aware Expression Transfer

Stereoscopic Output

[Thies et al '18] FaceVR

FaceVR: Self-Reenactment for HMD Removal

HeadOn: Real-time Reenactment Human Portraits

HeadOn: Real-time Reenactment of Human Portrait Videos

3D Scanning Prof. Nießner

VolumeDeform

VolumeDeform

[Innmann et al '16] VolumeDeform

Neural Parametric Models for 3D Deformable Shapes

Model Fitting

Holoportation

holoportation

http://research.microsoft.com/holoportation

Interactive 3D Technologies

http://research.microsoft.com/groups/i3d

Microsoft Research

Source: microsoft.com

Novel View Synthesis / Neural Radiance Fields

Face/Head Reconstruction

Input Video

4D Head Avatar

3D Scanning & Motion Capture Prof. Nießner [Grassal et al. '22] Neural Head Avatars

Preliminary Topics of the Lecture

- 1. Lecture Basic Concepts of Geometry
- 2. Lecture Surface Representations
- 3. Lecture Overview of Reconstruction Methods
- 4. Lecture Non-linear Optimization
- 5. Lecture Rigid Surface Tracking & Reconstruction

Preliminary Topics of the Lecture

- 6. Lecture Deformation and Non-rigid Surface Tracking
- 7. Lecture Non-rigid Tracking & Reconstruction
- 8. Lecture Face Tracking & Reconstruction
- 9. Lecture Body & Hand Tracking
- 10. Lecture Lighting and Materials
- 11. Lecture Novel View Synthesis / Neural Rendering

Lecture+Tutorials

- Requirements
 - C++ is a must
 - Profound knowledge of linear algebra
 - Basic concepts of 3D graphics

Lecture+Tutorials

- Lecture: Online videos
 - Lecture content (theory)
- Live Q&A for Lectures: 30 min, during lecture timeslot via Zoom
- Tutorials:
 - Uploaded with lectures
 - Help on exercises and projects
- Office Hours:
 - Contact TAs for zoom appointments
 - Use Moodle!

Exercises - Organization

Part 1: Tutorials & Exercises

Apr 26 - Jun 10

- Implement basic concepts
- Learning by doing
- Code in C++

Part 2: Final Project

Jun 10 - Jul 29

- 3D reconstruction / tracking
 - KinectFusion
 - Face Fitting
 - Bundling
- $\mathbf{I}_{\mathbf{a}} = \mathbf{A} =$

Question/Problems → Ask in Moodle; schedule Zoom/in-person

meeting

Exercises - Organization

Upload times

- Introduction of new exercise (Fridays)
- Submission of new exercise (Fridays, 23:59)
- Solution from previous exercise (Mondays)
- Until start of final projects

Office Hours

- Use the Moodle forum for questions
- For hard problems:
 - schedule a meeting with us via mail <u>andrei.burov@tum.de lukas.hoellein@tum.de</u> artem.sevastopolskiy@tum.de
 - Zoom or in-person during our office hours, Fridays 14:15-15:45

6	Fri	Release Exercise 1
7	Sat	
8	Sun	
9	Mon	
10	Tue	Lecture
11	Wed	
12	Thu	
13	Fri	Release Exercise 2 Exercise 1 Due
14	Sat	
15	Sun	
16	Mon	Solution to Exercise 1

Exercises - Organization

- 5 small, self-contained exercises
 - -1 week of working time, deadline Friday 23:59
 - Groups of two are allowed
- Grade bonus of 0.3
 - Submit all 5 exercises
 - Pass at least 4 exercises, 5th exercise passed/borderline
 - 0-50 (failed), 51-70 (borderline), 71-99 (passed), 100 (perfect pass)
 - Only applicable for passed exams!

ţŴŝB

Exercises – Preliminary Outline

- Basic 3D reconstruction algorithms
 - 1. Exercise (Camera Intrinsics, Back-projection, Meshes)
 - 2. Exercise (Surface Representations, Volumetric Fusion, SDF)
 - 3. Exercise (Procrustes)
 - 4. Exercise (Optimization)
 - 5. Exercise (Object Alignment, ICP)

Final Project

- Start: Mid-semester
- 3D reconstruction / tracking project

- KinectFusion, Face Fitting, Bundling etc. ...

- 5+ weeks
- Groups of 3-4
- Proposal (abstract 1-2 pages)
- Presentation of the project + abstract (2 pages with results)

- Questions covering lecture content
- Questions regarding final project

 At this point we are *not* yet sure whether exam is in-person or online – we will announce it as soon as things become clear

Logistics

TAs:

- Andrei Burov <u>andrei.burov@tum.de</u>
- Lukas Höllein <u>lukas.hoellein@tum.de</u>
- Artem Sevastopolsky <u>artem.sevastopolskiy@tum.de</u>

Lectures:

Online Videos + Live Q&A

Tutorials:

- Uploaded with lectures
- Focus on exercises and projects

Office Hours:

Email TAs for zoom appointments

Exercises:

- In total, 5 exercises with 1-2 weeks each for completion
- All exercises completed (4 of 5 passed, see exercise info for more details) gives **0.3** bonus on final grade
- First exercise: next week
- Exact deadlines are the day before the lecture at 23:55

Projects:

- 1 final project with 5+ weeks for completion
- Project features in final exam
- Mid-semester: Introduction to projects
- Final exam date: deadline for projects

