

Machine Learning Basics

Al vs ML vs DL

A Simple Task: Image Classification

800 S

Image Classification

(4, b)

Image Classification

Image Classification

Occlusions

Image Classification

Background clutter

I2DL: Prof. Niessner

Image Classification

Representation

A Simple Classifier

distance

distance

13

How does the NN classifier perform on training data?

What classifier is more likely to perform best on test data?

What are we actually learning?

• Hyperparameters = L1 distance: |x-c|• L2 distance: |x-c|No. of Neighbors: k

• These parameters are problem dependent.

How do we choose these hyperparameters?

Machine Learning for Classification

How can we learn to perform image classification?

I2DI: Prof. Niessner

• $M_{\theta}(I) = \{ \text{DOG, CAT} \}$

DOG

"Distance" function {DOG, CAT}

Given *i* images with train labels

DOG

DOG

Basic Recipe for Machine Learning

Split your data

Other splits are also possible (e.g., 80%/10%/10%)

Basic Recipe for Machine Learning

Split your data

Find your hyperparameters

Other splits are also possible (e.g., 80%/10%/10%)

Basic Recipe for Machine Learning

Split your data

How can we learn to perform image classification?

Task Experience Performance Image Data measure classification Accuracy

I2DI: Prof. Niessner

Unsupervised learning

Supervised learning

Labels or target classes

Unsupervised learning

Supervised learning

CAT

DOG

CAT

Unsupervised learning

- No label or target class
- Find out properties of the structure of the data
- Clustering (k-means, PCA, etc.)

Supervised learning

CAT

DOG

DOG

CAT

DOG

Unsupervised learning

Supervised learning

CAT

DOG

DOG

CAT

CAT

DOG

Unsupervised learning

Supervised learning

CAT

CAT

DOG

Unsupervised learning

Supervised learning

Reinforcement learning

Unsupervised learning

Supervised learning

Reinforcement learning

Insupervised learning

Supervised learning

Reinforcement learning

Linear Decision Boundaries

Let's start with a simple linear Model!

What are the pros and cons for using linear decision boundaries?

- Supervised learning
- Find a linear model that explains a target ${m y}$ given inputs ${m x}$

Training

Training $\{x_{1:n},y_{1:n}\}$ \longrightarrow Learner \bigoplus Model parameters of a Neural Network \bigoplus Model parameters

Testing

A linear model is expressed in the form

Input data, features

A linear model is expressed in the form

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \theta_0 + \begin{bmatrix} x_{11} & \cdots & x_{1d} \\ x_{21} & \cdots & x_{2d} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nd} \end{bmatrix} \cdot \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_d \end{bmatrix}$$

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1d} \\ 1 & x_{21} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{nd} \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix} \Rightarrow \hat{\mathbf{y}} = \mathbf{X}\boldsymbol{\theta}$$

$$\Rightarrow \hat{\mathbf{y}} = \mathbf{X}\boldsymbol{\theta}$$

How to Obtain the Model?

How to Obtain the Model?

• Loss function: measures how good my estimation is (how good my model is) and tells the optimization method how to make it better.

• Optimization: changes the model in order to improve the loss function (i.e., to improve my estimation).

Linear Regression: Loss Function

Linear Regression: Loss Function

Linear Regression: Loss Function

Minimizing

$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

Objective function

Energy

Cost function

 Linear least squares: an approach to fit a linear model to the data

$$\min_{\theta} J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

 Convex problem, there exists a closed-form solution that is unique.

$$\min_{\theta} J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i \theta - y_i)^2$$

n training samples

The estimation comes from the linear model

$$\min_{\theta} J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i \theta - y_i)^2$$

$$\min_{\boldsymbol{\theta}} \ J(\boldsymbol{\theta}) = (\mathbf{X}\boldsymbol{\theta} - \boldsymbol{y})^T (\mathbf{X}\boldsymbol{\theta} - \boldsymbol{y})$$

$$n \text{ training samples,} \qquad n \text{ labels}$$

each input vector has

size d

Matrix notation

$$\min_{\theta} J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i \theta - y_i)^2$$

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = (\mathbf{X}\boldsymbol{\theta} - \boldsymbol{y})^T (\mathbf{X}\boldsymbol{\theta} - \boldsymbol{y})$$

Matrix notation

More on matrix notation in the next exercise session

$$\min_{\theta} J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i \theta - y_i)^2$$

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = (\mathbf{X}\boldsymbol{\theta} - \boldsymbol{y})^T (\mathbf{X}\boldsymbol{\theta} - \boldsymbol{y})$$

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 0$$
Optimum

Optimization

$$\frac{\partial J(\theta)}{\partial \theta} = 2\mathbf{X}^T \mathbf{X} \boldsymbol{\theta} - 2\mathbf{X}^T \mathbf{y} = 0$$

 $\theta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

Details in the exercise session!

We have found an analytical solution to a convex problem

Inputs: Outside temperature, number of people,

True output:
Temperature of
the building

...

Is this the best Estimate?

Least squares estimate

$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

Maximum Likelihood

True underlying distribution

 $p_{model}(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})$ Parametric family of distributions

Controlled by parameter(s)

 A method of estimating the parameters of a statistical model given observations,

$$p_{model}(\mathbf{y}|\mathbf{X},oldsymbol{ heta})$$

Observations from $p_{data}(\mathbf{y}|\mathbf{X})$

• A method of estimating the parameters of a statistical model given observations, by finding the parameter values that maximize the likelihood of making the observations given the parameters.

$$\boldsymbol{\theta_{ML}} = \arg \max_{\boldsymbol{\theta}} \ p_{model}(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})$$

 MLE assumes that the training samples are independent and generated by the same probability distribution

$$p_{model}(\mathbf{y}|\mathbf{X},\boldsymbol{\theta}) = \prod_{i=1}^{n} p_{model}(y_i|\mathbf{x}_i,\boldsymbol{\theta})$$

12DL: Prof. Niessner

"i.i.d." assumption

$$\theta_{ML} = \arg \max_{\theta} \left[\prod_{i=1}^{n} p_{model}(y_i | \mathbf{x}_i, \theta) \right]$$

$$\theta_{ML} = \arg \max_{\theta} \left[\sum_{i=1}^{n} \log p_{model}(y_i | \mathbf{x}_i, \theta) \right]$$

Logarithmic property $\log ab = \log a + \log b$

$$\boldsymbol{\theta_{ML}} = \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log p_{model}(y_i|\mathbf{x}_i,\boldsymbol{\theta})$$

What shape does our probability distribution have?

 $p(y_i|\mathbf{x}_i,\boldsymbol{\theta})$

What shape does our probability distribution have?

$$p(y_i|\mathbf{x}_i,m{ heta})$$
 Mean Gaussian Noise Mean Assuming $y_i = \mathbf{x}_im{ heta} + \sigma_i$ with $\sigma_i \sim \mathcal{N}(0,\sigma^2)$

Gaussian:

$$p(y_i) = \frac{1}{\sqrt{(2\pi\sigma^2)}} e^{-\frac{1}{2\sigma^2}(y_i - \mu)^2}$$
 $y_i \sim \mathcal{N}(\mu, \sigma^2)$

$$p(y_i|\mathbf{x}_i, oldsymbol{ heta})$$
 Mean Gaussian Noise Mean Assuming $y_i = \mathbf{x}_i oldsymbol{ heta} + \sigma_i$ with $\sigma_i \sim \mathcal{N}(0, \sigma^2)$ $oldsymbol{ heta} y_i \sim \mathcal{N}(\mathbf{x}_i oldsymbol{ heta}, \sigma^2)$

Gaussian:

$$p(y_i) = \frac{1}{\sqrt{(2\pi\sigma^2)}} e^{-\frac{1}{2\sigma^2}(y_i - \mu)^2}$$
 $y_i \sim \mathcal{N}(\mu, \sigma^2)$

$$p(y_i|\mathbf{x}_i,\boldsymbol{\theta}) = ?$$
Mean
$$\text{Mean}$$
Assuming $y_i = \mathbf{x}_i\boldsymbol{\theta} + \sigma_i$ with $\sigma_i \sim \mathcal{N}(0,\sigma^2)$

$$\rightarrow y_i \sim \mathcal{N}(\mathbf{x}_i\boldsymbol{\theta},\sigma^2)$$
Gaussian:
$$p(y_i) = \frac{1}{\sqrt{(2\pi\sigma^2)}} e^{-\frac{1}{2\sigma^2}(y_i-\mu)^2}$$

$$y_i \sim \mathcal{N}(\mu,\sigma^2)$$

$$p(y_i|\mathbf{x}_i,\boldsymbol{\theta}) = (2\pi\sigma^2)^{-1/2}e^{-\frac{1}{2\sigma^2}(y_i-\mathbf{x}_i\boldsymbol{\theta})^2}$$

Assuming
$$y_i = \mathbf{x}_i \boldsymbol{\theta} + \sigma_i$$
 with $\sigma_i \sim \mathcal{N}(0, \sigma^2)$

$$\rightarrow y_i \sim \mathcal{N}(\mathbf{x}_i \boldsymbol{\theta}, \sigma^2)$$

Gaussian:

$$p(y_i) = \frac{1}{\sqrt{(2\pi\sigma^2)}} e^{-\frac{1}{2\sigma^2}(y_i - \mu)^2}$$

$$y_i \sim \mathcal{N}(\mu, \sigma^2)$$

$$p(y_i|\mathbf{x}_i,\boldsymbol{\theta}) = (2\pi\sigma^2)^{-1/2}e^{-\frac{1}{2\sigma^2}(y_i-\mathbf{x}_i\boldsymbol{\theta})^2}$$

Original problem

Original optimization
$$\theta_{ML} = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log p_{model}(y_i|\mathbf{x}_i,\boldsymbol{\theta})$$

$$\sum_{i=1}^{n} \log \left[(2\pi\sigma^2)^{-\frac{1}{2}} e^{-\frac{1}{2\sigma^2} (y_i - x_i \theta)^2} \right]$$
Canceling log and e

$$\sum_{i=1}^{n} -\frac{1}{2} \log (2\pi\sigma^2) + \sum_{i=1}^{n} \left(-\frac{1}{2\sigma^2}\right) (y_i - x_i \theta)^2$$

$$-\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} (y - X\theta)^T (y - X\theta)$$

$$\theta_{ML} = \arg \max_{\theta} \left[\sum_{i=1}^{n} \log p_{model}(y_i | \mathbf{x}_i, \boldsymbol{\theta}) \right]$$
$$-\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) \right]$$

Details in the exercise session!

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 0$$

How can we find the estimate of theta?

$$\boldsymbol{\theta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \mathbf{y}$$

Linear Regression

 Maximum Likelihood Estimate (MLE) corresponds to the Least Squares Estimate (given the assumptions)

 Introduced the concepts of loss function and optimization to obtain the best model for regression

Signal Si

Image Classification

Regression vs Classification

 Regression: predict a continuous output value (e.g., temperature of a room)

- Classification: predict a discrete value
 - Binary classification: output is either 0 or 1

- Multi-class classification: set of N classes

Sigmoid for Binary Predictions

Spoiler Alert: 1-Layer Neural Network

Probability of a binary output

$$\hat{\mathbf{y}} = p(\mathbf{y} = 1 | \mathbf{X}, \boldsymbol{\theta}) = \prod_{i=1}^n p(y_i = 1 | \mathbf{x}_i, \boldsymbol{\theta})$$

The prediction of our sigmoid $\hat{y}_i = \sigma(\mathbf{x}_i \boldsymbol{\theta})$

Probability of a binary output

$$\hat{\mathbf{y}} = p(\mathbf{y} = 1 | \mathbf{X}, \boldsymbol{\theta}) = \prod_{i=1}^{n} p(y_i = 1 | \mathbf{x}_i, \boldsymbol{\theta})$$

Bernoulli trial

$$p(z|\phi) = \phi^z (1-\phi)^{1-z} = \begin{cases} \phi & \text{, if } z=1\\ 1-\phi & \text{if } z=0 \end{cases}$$
The prediction of our sigmoid

Probability of a binary output

$$\hat{\mathbf{y}} = p(\mathbf{y} = 1 | \mathbf{X}, \boldsymbol{\theta}) = \prod_{i=1}^{n} p(y_i = 1 | \mathbf{x}_i, \boldsymbol{\theta})$$

$$\hat{\mathbf{y}} = \prod_{i=1}^{n} \hat{y}_i^{y_i} (1 - \hat{y}_i)^{(1 - y_i)}$$
Model for coins

Prediction of the True labels: 0 or 1

I2DL: Prof. Niessner Sigmoid: continuous

Probability of a binary output

$$p(\mathbf{y}|\mathbf{X},\boldsymbol{\theta}) = \hat{\mathbf{y}} = \prod_{i=1}^{n} \hat{y}_i^{y_i} (1 - \hat{y}_i)^{(1-y_i)}$$

Maximum Likelihood Estimate

$$\theta_{ML} = \arg \max_{\theta} \log p(y|\mathbf{X}, \theta)$$

$$p(y|\mathbf{X}, \boldsymbol{\theta}) = \hat{\mathbf{y}} = \prod_{i=1}^{n} \hat{y}_{i}^{y_{i}} (1 - \hat{y}_{i})^{(1 - y_{i})}$$

$$\sum_{i=1}^{n} \log \left(\hat{y}_{i}^{y_{i}} (1 - \hat{y}_{i})^{(1 - y_{i})} \right)$$

$$\sum_{i=1}^{n} y_{i} \log \hat{y}_{i} + (1 - y_{i}) \log(1 - \hat{y}_{i})$$

$$\mathcal{L}(\hat{y}_i, y_i) = -[y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)]$$

Maximize likelihood by minimizing the loss function

$$y_i = 1 \longrightarrow \mathcal{L}(\hat{y}_i, 1) = -\log \hat{y}_i$$

Maximize!
$$\theta_{ML} = \arg \max_{\theta} \log p(y|X, \theta)$$

$$\mathcal{L}(\hat{y}_i, y_i) = -[y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)]$$

$$y_i = 1 \longrightarrow \mathcal{L}(\hat{y}_i, 1) = -\log \hat{y}_i$$

To minimize $\mathcal{L}(\hat{y}_i, y_i)$, we want $\log \hat{y}_i$ large; since logarithm is a monotonically increasing function, we want a large \hat{y}_i .

(1 is the largest value our model's estimate can take!)

$$\mathcal{L}(\hat{y}_i, y_i) = -[y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)]$$

$$y_i = 1 \longrightarrow \mathcal{L}(\hat{y}_i, 1) = -\log \hat{y}_i$$

$$y_i = 0 \longrightarrow \mathcal{L}(\hat{y}_i, 0) = -\log(1 - \hat{y}_i)$$

We want $\log(1-\hat{y}_i)$ large; so we want \hat{y}_i to be small

(0 is the smallest value our model's estimate can take!)

$$\mathcal{L}(\hat{y}_i, y_i) = -[y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)]$$

Referred to as *binary cross-entropy* loss (BCE)

 Related to the multi-class loss you will see in this course (also called softmax loss)

Logistic Regression: Optimization

Loss function

$$\mathcal{L}(\hat{y}_i, y_i) = -[y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)]$$

Cost function

$$C(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\hat{y}_i, y_i)$$

Minimization

$$= -\frac{1}{n} \sum_{i=1}^{n} y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)$$

12DL: Prof. Niessner

 $\hat{\mathbf{y}}_i = \sigma(\mathbf{x}_i \boldsymbol{\theta})$

Logistic Regression: Optimization

No closed-form solution

Make use of an iterative method → gradient descent

Gradient descent – later on!

Why Machine Learning so Cool

- We can learn from experience
 - -> Intelligence, certain ability to infer the future!

- Even linear models are often pretty good for complex phenomena: e.g., weather:
 - Linear combination of day-time, day-year etc. is often pretty good

Next Lectures

Next exercise session: Math Recap II

- Next Lecture: Lecture 3:
 - Jumping towards our first Neural Networks and Computational Graphs

References for further Reading

- Cross validation:
 - https://medium.com/@zstern/k-fold-cross-validationexplained-5aebagoebb3
 - https://towardsdatascience.com/train-test-split-andcross-validation-in-python-80b61beca4b6

- General Machine Learning book:
 - Pattern Recognition and Machine Learning. C. Bishop.

See you next week ©