Tा

$$
\begin{gathered}
\text { Machine Learning } \\
\text { Basics }
\end{gathered}
$$

Al vs ML vs DL

Artificial Intelligence

Tा

$$
\begin{gathered}
\text { A Simple Task: } \\
\text { Image Classification }
\end{gathered}
$$

Image Classification

Image Classification

Background clutter

Image Classification

Representation

Tा

A Simple Classifier

Nearest Neighbor

NN classifier = dog

Nearest Neighbor

distance

Nearest Neighbor

The Data

NN Classifier

How does the NN classifier perform on training data?
What classifier is more likely to perform best on test data?
What are we actually learning?

Nearest Neighbor

L1 distance: $|x-c|$

- Hyperparameters \longleftrightarrow L2 distance : $\|x-c\|_{2}$ No. of Neighbors: k
- These parameters are problem dependent.
- How do we choose these hyperparameters?

Machine Learning for Classification

Machine Learning

- How can we learn to perform image classification?

Machine Learning

- $M_{\theta}(I)=\{$ DOG, CAT $\}$

Model Params

Machine Learning

- $M_{\theta}(I)=\{D O G, C A T\}$

Given \boldsymbol{i} images with train labels

Basic Recipe for Machine Learning

- Split your data
60\%
20\%
20\%

train validation test

Find model params θ

Other splits are also possible (e.g., 80\%/10\%/10\%)

Basic Recipe for Machine Learning

- Split your data
60\%
20\%
20\%
train
validation
test

Find your hyperparameters

Other splits are also possible (e.g., 80\%/10\%/10\%)

Basic Recipe for Machine Learning

Machine Learning

- How can we learn to perform image classification?

Task
Image
classification

Experience
Performance measure

Accuracy

Data

Machine Learning

Unsupervised learning
 Supervised learning
 - Labels or target classes

Machine Learning

Unsupervised learning

Machine Learning

Unsupervised learning

- No label or target class
- Find out properties of the structure of the data
- Clustering (k-means, PCA, etc.)

Supervised learning
CAT

DOG

Machine Learning

Unsupervised learning

Supervised learning

DOG

DOG

Machine Learning

Unsupervised learning

Machine Learning

Unsupervised learning

Supervised learning

Reinforcement learning

Agents

Machine Learning

Unsupervised learning

Supervised learning

Reinforcement learning

Agents
Environment

Machine Learning

Supervised learning

Reinforcement Learning

Linear Decision Boundaries

Let's start with a simple linear Model!

What are the pros and cons for using linear decision boundaries?

Tा

Linear Regression

Linear Regression

- Supervised learning
- Find a linear model that explains a target \boldsymbol{y} given inputs \boldsymbol{x}

Linear Regression

Training

Input (e.g., image, measurement) Labels
(e.g., cat/dog)

Linear Regression

Training

can be parameters of a

Testing

Linear Prediction

- A linear model is expressed in the form

Input data, features

Linear Prediction

- A linear model is expressed in the form

$$
\hat{y}_{i}=\underset{\uparrow}{\theta_{0}}+\sum_{j=1}^{d} x_{i j} \theta_{j}=\theta_{0}+x_{i 1} \theta_{1}+x_{i 2} \theta_{2}+\cdots+x_{i d} \theta_{d}
$$

[^0]
Linear Prediction

Linear Prediction

$$
\left[\begin{array}{l}
\hat{y}_{1} \\
\hat{y}_{2} \\
\vdots \\
\hat{y}_{n}
\end{array}\right]=\theta_{0}+\left[\begin{array}{ccc}
x_{11} & \cdots & x_{1 d} \\
x_{21} & \cdots & x_{2 d} \\
\vdots & \ddots & \vdots \\
x_{n 1} & \cdots & x_{n d}
\end{array}\right] \cdot\left[\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{d}
\end{array}\right]
$$

$$
\left[\begin{array}{c}
\hat{y}_{1} \\
\hat{y}_{2} \\
\vdots \\
\hat{y}_{n}
\end{array}\right]=\left[\begin{array}{cccc}
1 & x_{11} & \cdots & x_{1 d} \\
1 & x_{21} & \cdots & x_{2 d} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{n 1} & \cdots & x_{n d}
\end{array}\right]\left[\begin{array}{c}
\theta_{0} \\
\theta_{1} \\
\vdots \\
\theta_{d}
\end{array}\right]
$$

$$
\Rightarrow \hat{\mathbf{y}}=\mathbf{X} \boldsymbol{\theta}
$$

Linear Prediction

Linear Prediction

Temperature of the building

$$
\left[\begin{array}{l}
\hat{y}_{1} \\
\hat{y}_{2}
\end{array}\right]=\left[\begin{array}{rrrrr}
1 & 25 & 50 & 2 & 50 \\
1 & -10 & 50 & 0 & 10
\end{array}\right] \cdot\left[\begin{array}{c}
0.2 \\
0.64 \\
\hline 0 \\
\hline 1 \\
\hline 0.14
\end{array}\right]
$$

Linear Prediction

How to Obtain the Model?

Data points
Labels (ground truth)

X

Model parameters
Estimation
θ
\hat{y}

How to Obtain the Model?

- Loss function: measures how good my estimation is (how good my model is) and tells the optimization method how to make it better.
- Optimization: changes the model in order to improve the loss function (i.e., to improve my estimation).

Linear Regression: Loss Function

Linear Regression: Loss Function

Linear Regression: Loss Function

Minimizing

$$
J(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}
$$

Objective function
Energy cost function

Optimization: Linear Least Squares

- Linear least squares: an approach to fit a linear model to the data

$$
\min _{\theta} J(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}
$$

- Convex problem, there exists a closed-form solution that is unique.

Optimization: Linear Least Squares

$$
\min _{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i} \boldsymbol{\theta}-y_{i}\right)^{2}
$$

n training samples

The estimation comes from the linear model

Optimization: Linear Least Squares

$$
\begin{array}{ll}
\min _{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i} \boldsymbol{\theta}-y_{i}\right)^{2} \\
\min _{\boldsymbol{\theta}} J(\boldsymbol{\theta})=(\mathbf{X} \boldsymbol{\theta}-\boldsymbol{y})^{T}(\mathbf{X} \boldsymbol{\theta}-\boldsymbol{y}) \quad \text { Matrix notation } \\
\quad n \text { training samples, } \\
\quad \begin{array}{l}
\text { each input vector has } \\
\quad \text { size } d
\end{array}
\end{array}
$$

Optimization: Linear Least Squares

$$
\min _{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i} \boldsymbol{\theta}-y_{i}\right)^{2}
$$

$$
\min _{\boldsymbol{\theta}} J(\boldsymbol{\theta})=(\mathbf{X} \boldsymbol{\theta}-\boldsymbol{y})^{T}(\mathbf{X} \boldsymbol{\theta}-\boldsymbol{y})
$$

Optimization: Linear Least Squares

$$
\min _{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i} \boldsymbol{\theta}-y_{i}\right)^{2}
$$

$$
\min _{\boldsymbol{\theta}} J(\boldsymbol{\theta})=(\mathbf{X} \boldsymbol{\theta}-\boldsymbol{y})^{T}(\mathbf{X} \boldsymbol{\theta}-\boldsymbol{y})
$$

$$
\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}=0
$$

Convex

Optimization

$$
\frac{\partial J(\theta)}{\partial \theta}=2 \mathbf{X}^{T} \mathbf{X} \boldsymbol{\theta}-2 \mathbf{X}^{T} \mathbf{y}=0
$$

True output:
Temperature of the building

$$
\theta=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

1
Inputs: Outside temperature, number of people,

We have found an analytical solution to a convex problem

Details in the exercise session!

Is this the best Estimate?

- Least squares estimate

$$
J(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}
$$

Tा

Maximum Likelihood

Maximum Likelihood Estimate

$p_{d a t a}(\mathbf{y} \mid \mathbf{X})$

True underlying distribution

$p_{\text {model }}(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}) \quad$ Parametric family of distributions

Controlled by parameter(s)

Maximum Likelihood Estimate

- A method of estimating the parameters of a statistical model given observations,

$p_{\text {model }}(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta})$

Observations from $p_{\text {data }}(\mathbf{y} \mid \mathbf{X})$

Maximum Likelihood Estimate

- A method of estimating the parameters of a statistical model given observations, by finding the parameter values that maximize the likelihood of making the observations given the parameters.

$$
\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} p_{\text {model }}(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta})
$$

Maximum Likelihood Estimate

- MLE assumes that the training samples are independent and generated by the same probability distribution

$$
\begin{gathered}
p_{\text {model }}(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta}) \\
\underset{\uparrow}{ }=\prod_{i=1}^{n} p_{\text {model }}\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) \\
\text { "i.i.d." assumption }
\end{gathered}
$$

Maximum Likelihood Estimate

$$
\begin{aligned}
& \boldsymbol{\theta}_{\boldsymbol{M L}}=\arg \max _{\boldsymbol{\theta}} \prod_{i=1}^{n} p_{\text {model }}\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) \\
& \boldsymbol{\theta}_{\boldsymbol{M L}}=\arg \max _{\boldsymbol{\theta}} \sum_{i=1}^{n} \log p_{\text {model }}\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)
\end{aligned}
$$

Logarithmic property $\log a b=\log a+\log b$

Back to Linear Regression

$$
\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} \sum_{i=1}^{n} \log p_{\text {model }}\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)
$$

What shape does our probability distribution have?

Back to Linear Regression

$p\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) \quad$ What shape does our probability distribution have?

Back to Linear Regression

$$
p\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)
$$

\downarrow

Assuming $y_{i}=\mathbf{x}_{i} \boldsymbol{\theta}+\sigma_{i}$ with $\sigma_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$

Gaussian:

$$
p\left(y_{i}\right)=\frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)}} e^{-\frac{1}{2 \sigma^{2}}\left(y_{i}-\mu\right)^{2}} \quad y_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

Back to Linear Regression

$$
p\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)
$$

Gaussian Noise

\downarrow

Assuming $y_{i}=\mathbf{x}_{i} \boldsymbol{\theta}+\sigma_{i}$ with $\sigma_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$

$$
\longrightarrow y_{i} \sim \mathcal{N}\left(\mathbf{x}_{i} \boldsymbol{\theta}, \sigma^{2}\right)
$$

Gaussian:

$$
p\left(y_{i}\right)=\frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)}} e^{-\frac{1}{2 \sigma^{2}}\left(y_{i}-\mu\right)^{2}} \quad y_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

Back to Linear Regression

$$
p\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)=? \quad \text { Mean } \quad \text { Gaussian Noise }
$$

Assuming $y_{i}=\mathbf{x}_{i} \boldsymbol{\theta}+\sigma_{i}$ with $\sigma_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$

$$
\longrightarrow y_{i} \sim \mathcal{N}\left(\mathbf{x}_{i} \boldsymbol{\theta}, \sigma^{2}\right)
$$

Gaussian:
$p\left(y_{i}\right)=\frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)}} e^{-\frac{1}{2 \sigma^{2}}\left(y_{i}-\mu\right)^{2}} \quad y_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$

Back to Linear Regression

$$
\left.p\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} e^{-\frac{1}{2 \sigma^{2}}\left(y_{i}-\mathbf{x}_{i} \boldsymbol{\theta}\right.}\right)^{2}
$$

Assuming $y_{i}=\mathbf{x}_{i} \boldsymbol{\theta}+\sigma_{i}$ with $\sigma_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$

$$
\longrightarrow y_{i} \sim \mathcal{N}\left(\mathbf{x}_{i} \boldsymbol{\theta}, \sigma^{2}\right)
$$

Gaussian:

$$
p\left(y_{i}\right)=\frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)}} e^{-\frac{1}{2 \sigma^{2}}\left(y_{i}-\mu\right)^{2}} \quad y_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

Back to Linear Regression

$$
p\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} e^{-\frac{1}{2 \sigma^{2}}\left(y_{i}-\mathbf{x}_{i} \boldsymbol{\theta}\right)^{2}}
$$

Original
optimization problem

$$
\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} \sum_{i=1}^{n} \log p_{\text {model }}\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)
$$

$$
\begin{aligned}
& \text { Back to Linear Regression } \\
& \qquad \sum_{i=1}^{n} \log \left[\left(2 \pi \sigma^{2}\right)^{-\frac{1}{2}} e_{\mid}^{\left.e^{-\frac{1}{2 \sigma^{2}}\left(y_{i}-\boldsymbol{x}_{i} \boldsymbol{\theta}\right)^{2}}\right]}\right. \text { Canceling log ande e } \\
& \sum_{i=1}^{n}-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)+\sum_{i=1}^{n}\left(-\frac{1}{2 \sigma^{2}}\right)\left(y_{i}-\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{\theta}\right)^{2} \\
& -\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(\boldsymbol{y}-\boldsymbol{x} \boldsymbol{\theta})^{T}(\boldsymbol{y}-\boldsymbol{x} \boldsymbol{\theta})
\end{aligned}
$$

Back to Linear Regression

$$
\begin{aligned}
& \theta_{M L}=\arg \max _{\theta} \sum_{i=1}^{n} \log p_{\text {model }}\left(y_{i} \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) \\
& -\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})^{T}(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})
\end{aligned}
$$

Details in the
exercise session!

$$
\begin{aligned}
\| \frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}=0 & \begin{array}{l}
\text { How can we find } \\
\text { the estimate of } \\
\text { theta? }
\end{array} \\
\boldsymbol{\theta}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \mathbf{y} &
\end{aligned}
$$

Linear Regression

- Maximum Likelihood Estimate (MLE) corresponds to the Least Squares Estimate (given the assumptions)
- Introduced the concepts of loss function and optimization to obtain the best model for regression

Regression vs Classification

- Regression: predict a continuous output value (e.g., temperature of a room)
- Classification: predict a discrete value
- Binary classification: output is either o or 1
- Multi-class classification: set of N classes

ाढा

Logistic Regression

Sigmoid for Binary Predictions

Spoiler Alert: 1-Layer Neural Network

Logistic Regression

- Probability of a binary output

$$
\begin{aligned}
& \hat{\mathbf{y}}=p(\mathbf{y}=1 \mid \mathbf{X}, \boldsymbol{\theta})=\prod_{i=1}^{n} p\left(y_{i}=1 \mathbf{x}_{i}, \boldsymbol{\theta}\right) \\
& \begin{array}{c}
\text { The prediction of } \\
\text { our sigmoid }
\end{array} \\
& \hat{y}_{i}=\sigma\left(\mathbf{x}_{i} \boldsymbol{\theta}\right)
\end{aligned}
$$

Logistic Regression

- Probability of a binary output

$$
\begin{aligned}
& \hat{\mathbf{y}}=p(\mathbf{y}=1 \mid \mathbf{X}, \boldsymbol{\theta})=\prod_{i=1}^{n} p\left(y_{i}=1 \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right) \\
& p(z \mid \phi)=\begin{array}{l}
\phi^{z}(1-\phi)^{1-z}=\left\{\begin{array}{lll}
\phi & , & \text { if } \\
1-\phi, & \text { if } & z=1 \\
1-0
\end{array}\right. \\
\\
\begin{array}{l}
\text { The prediction of }
\end{array} \\
\text { our sigmoid trial }
\end{array}
\end{aligned}
$$

Model for coins

Logistic Regression

- Probability of a binary output

$$
\hat{\mathbf{y}}=p(\mathbf{y}=1 \mid \mathbf{X}, \boldsymbol{\theta})=\prod_{i=1}^{n} p\left(y_{i}=1 \mid \mathbf{x}_{i}, \boldsymbol{\theta}\right)
$$

Logistic Regression: Loss Function

- Probability of a binary output

$$
p(y \mid \mathbf{X}, \boldsymbol{\theta})=\hat{\mathbf{y}}=\prod_{i=1}^{n} \hat{y}_{i}^{y_{i}}\left(1-\hat{y}_{i}\right)^{\left(1-y_{i}\right)}
$$

- Maximum Likelihood Estimate

$$
\boldsymbol{\theta}_{M L}=\arg \max _{\boldsymbol{\theta}} \log p(y \mid \mathbf{X}, \boldsymbol{\theta})
$$

Logistic Regression: Loss Function

$$
\begin{aligned}
& p(\mathrm{y} \mid \mathbf{X}, \boldsymbol{\theta})=\hat{\mathbf{y}}=\prod_{i=1}^{n} l \hat{y}_{i}^{y_{i}}\left(1-\hat{y}_{i}\right)^{\left(1-y_{i}\right)} \\
& \sum_{i=1}^{n} \log \left(\hat{y}_{i}^{y_{i}}\left(1-\hat{y}_{i}\right)^{\left(1-y_{i}\right)}\right) \\
& \sum_{i=1}^{n} y_{i} \log \hat{y}_{i}+\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)
\end{aligned}
$$

Logistic Regression: Loss Function

$$
\mathcal{L}\left(\hat{y}_{i}, y_{i}\right)=\square\left[y_{i} \log \hat{y}_{i}+\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)\right]
$$

Maximize likelihood
by minimizing the
loss function

$$
y_{i}=1 \longrightarrow \mathcal{L}\left(\hat{y}_{i}, 1\right)=-\log \hat{y}_{i}
$$

Maximize!

$$
\boldsymbol{\theta}_{\boldsymbol{M L}}=\arg \max _{\boldsymbol{\theta}} \log p(\mathrm{y} \mid \mathbf{X}, \boldsymbol{\theta})
$$

Logistic Regression: Loss Function

$$
\mathcal{L}\left(\hat{y}_{i}, y_{i}\right)=-\left[y_{i} \log \hat{y}_{i}+\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)\right]
$$

$$
y_{i}=1 \longrightarrow \mathcal{L}\left(\hat{y}_{i}, 1\right)=-\log \hat{y}_{i}
$$

To minimize $\mathcal{L}\left(\hat{y}_{i}, y_{i}\right)$, we want $\log \hat{y}_{i}$ large; since logarithm is a monotonically increasing function, we want a large \hat{y}_{i}

Logistic Regression: Loss Function

$$
\mathcal{L}\left(\hat{y}_{i}, y_{i}\right)=-\left[y_{i} \log \hat{y}_{i}+\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)\right]
$$

$$
\begin{aligned}
& y_{i}=1 \longrightarrow \mathcal{L}\left(\hat{y}_{i}, 1\right)=-\log \hat{y}_{i} \\
& y_{i}=0 \longrightarrow \mathcal{L}\left(\hat{y}_{i}, 0\right)=-\log \left(1-\hat{y}_{i}\right)
\end{aligned}
$$

We want $\log \left(1-\hat{y}_{i}\right)$ large; so we want \hat{y}_{i} to be small
(0 is the smallest value our model's estimate can take!)

Logistic Regression: Loss Function

$$
\mathcal{L}\left(\hat{y}_{i}, y_{i}\right)=-\left[y_{i} \log \hat{y}_{i}+\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)\right]
$$

Referred to as binary cross-entropyloss (BCE)

- Related to the multi-class loss you will see in this course (also called softmax loss)

Logistic Regression: Optimization

- Loss function

$$
\mathcal{L}\left(\hat{y}_{i}, y_{i}\right)=-\left[y_{i} \log \hat{y}_{i}+\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)\right]
$$

- Cost function

$$
C(\theta)=-\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}\left(\hat{y}_{i}, y_{i}\right)
$$

$$
=-\frac{1}{n} \sum_{i=1}^{n} y_{i} \log \hat{y}_{i}+\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)
$$

Logistic Regression: Optimization

- No closed-form solution
- Make use of an iterative method \rightarrow gradient descent Gradient descent later on!

Why Machine Learning so Cool

- We can learn from experience
-> Intelligence, certain ability to infer the future!
- Even linear models are often pretty good for complex phenomena: e.g., weather:
- Linear combination of day-time, day-year etc. is often pretty good

Next Lectures

- Next exercise session: Math Recap II
- Next Lecture: Lecture 3:
- Jumping towards our first Neural Networks and Computational Graphs

References for further Reading

- Cross validation:
- https://medium.com/@zstern/k-fold-cross-validation-explained-5aebagoebb3
- https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6
- General Machine Learning book:
- Pattern Recognition and Machine Learning. C. Bishop.

Tा

See you next week :

[^0]: I2DL: Prof. Niessner

