

Introduction to Deep Learning

I2DL: Prof. Niessner

The Team

Lecturer

PhDs

Matthias Niessner

Manuel Dahnert

Yujin Chen

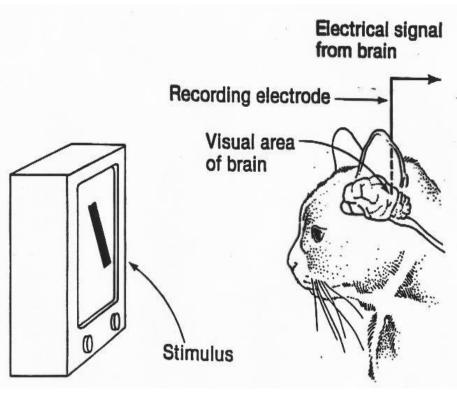
Guy Gafni

What is Computer Vision?

- First defined in the 60s in artificial intelligence groups
- "Mimic the human visual system"
- Center block of robotic intelligence

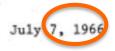
Hubel and Wiesel

David Hubel and Torsten Wiesel
 were neurobiologists from Harvard
 Medical School


• Experiment revealed several secrets of the human vision system

• Won 2 Nobel prizes

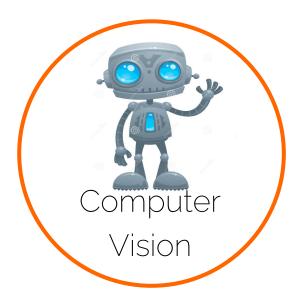
Hubel and Wiesel Experiment

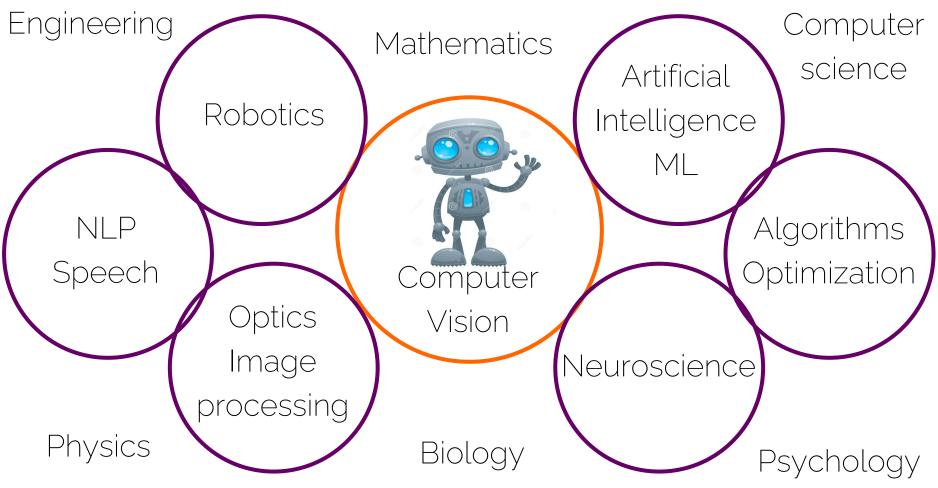

- Recorded electrical activity from individual neurons in the brains of cats.
- Slide projector to show specific patterns to the cats noted specific patterns stimulated activity in specific parts of the brain.
- Results: Visual cortex cells are sensitive to the orientation of edges but insensitive to their position

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

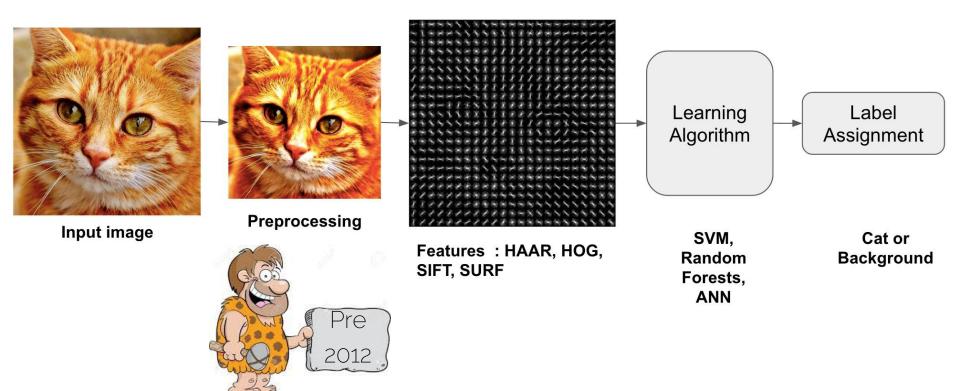
Artifi	cial	Ir	ntel	ligence	Group	
Vision	Мещо		No.	100.		

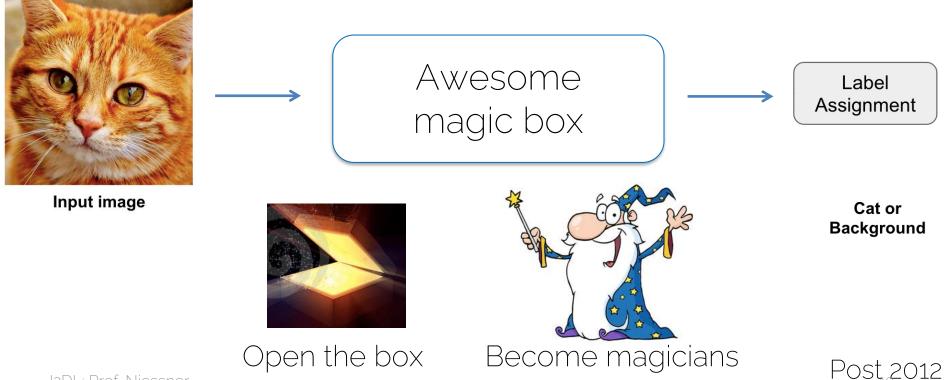



THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

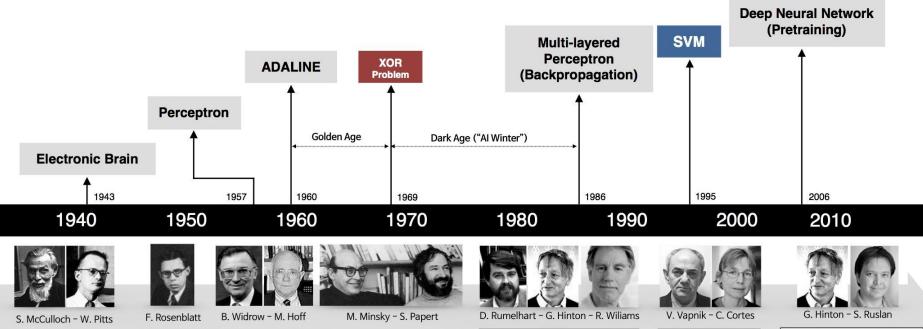

A Few Decades Later...



I2DL: Prof. Niessner

Image Classification

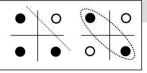
Image Classification



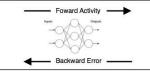

I2DL: Prof. Niessner

Why Deep Learning?

Deep Learning History



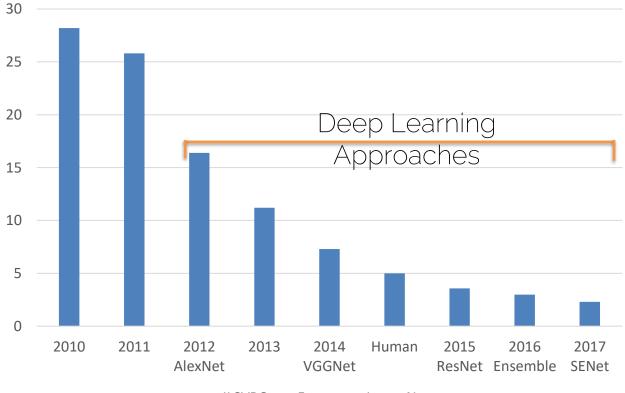
Adjustable Weights
Weights are not Learned


I2DL: Prof. Niessner

12

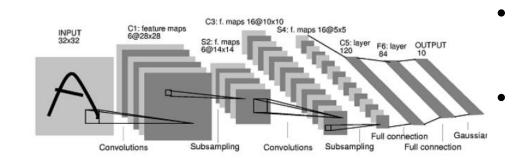
· Learnable Weights and Threshold

XOR Problem

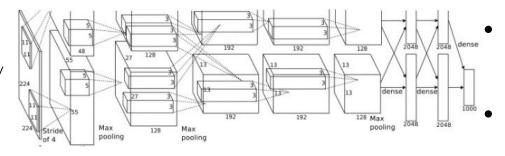

Solution to nonlinearly separable problems
 Sig computation, local optima and overfitting
 Kernel function: Human Intervention

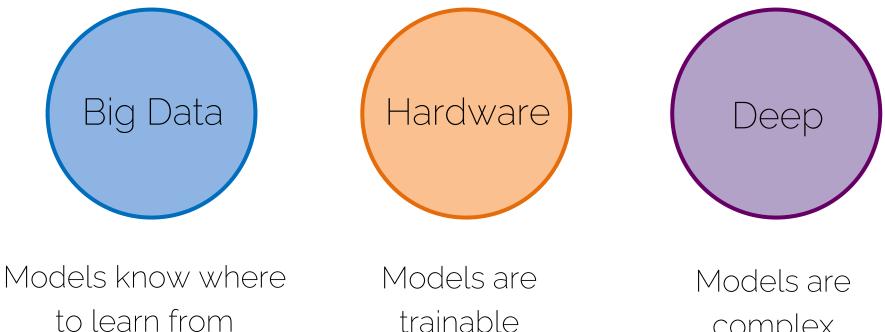
Hierarchical feature Learning

C


The Empire Strikes Back

ILSVRC top-5 error on ImageNet

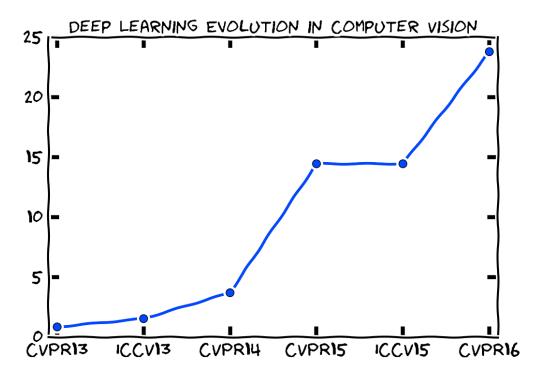

What Has Changed?


MNIST digit recognition dataset 10⁷ pixels used in training

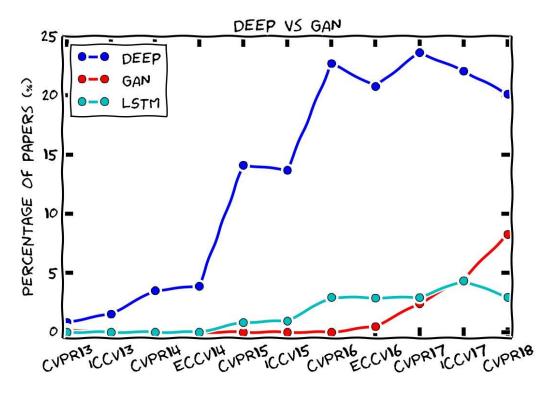
2012 Krizhevsky et al.

ImageNet image recognition dataset 10¹⁴ pixels used in training

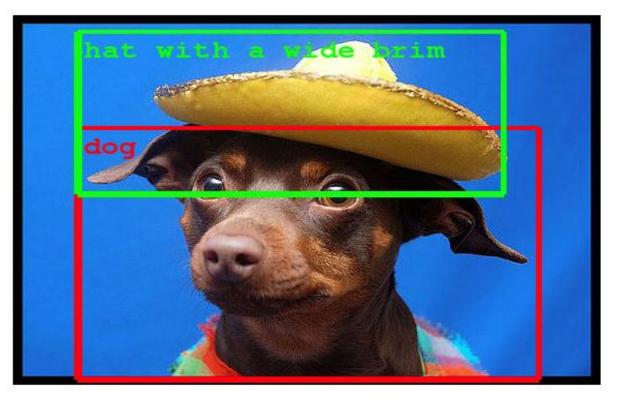
What Made this Possible?


complex

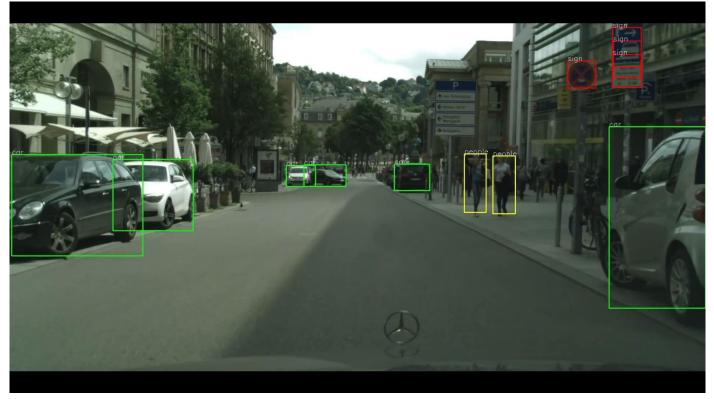
Deep Learning Recognition


ACM Turing Award 2019 (Nobel Prize of Computing) Yann LeCun, Geoffrey Hinton, and Yoshua Bengio

Deep Learning and Computer Vision



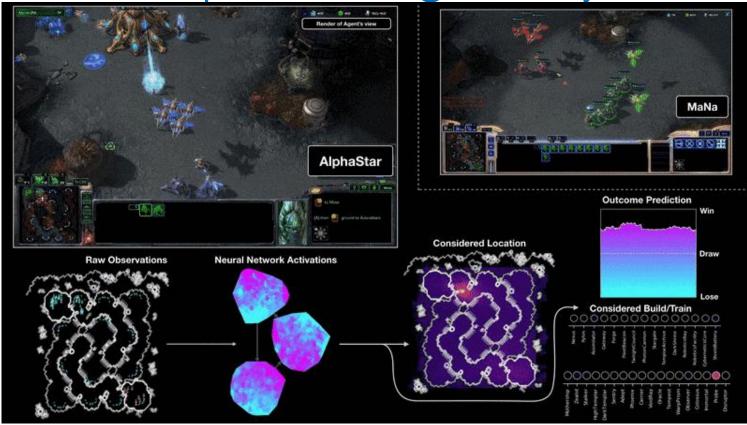
Credits: Dr. Pont-Tuset, ETH Zurich

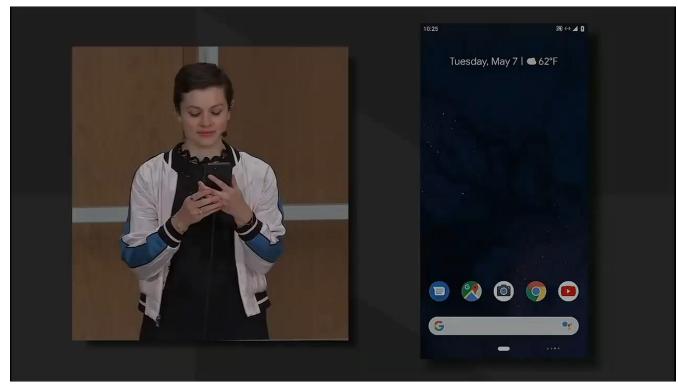

Deep Learning and Computer Vision

Credits: Dr. Pont-Tuset, ETH Zurich

Object Detection

AlphaGo

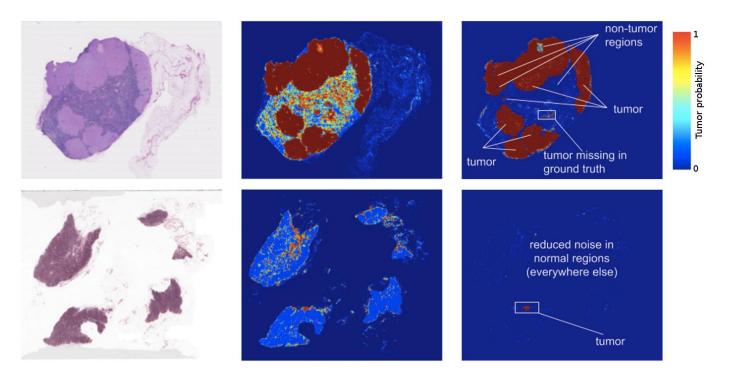

ever punch a cactus?


Emoticon suggestion

English – detected – 🌵 🌓 🖨	German •	\Box				
Deep Learning rocks	Deep Learning Felsen					
Machina translation						

Machine translation

Alpha Star



Google Assistant (Google IO'19)

Google LaMDA (Google 10'22)

• Chat-GPT

Healthcare, cancer detection

 \rightarrow

TEXT DESCRIPTION

An astronaut Teddy bears A bowl of soup

mixing sparkling chemicals as mad scientists **shopping for groceries** working on new AI research

in the style of ukiyo-e as a one-line drawing in ancient Egypt

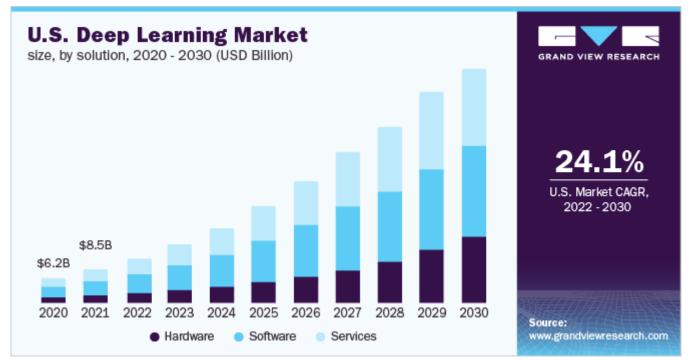
DALL·E 2

Dall-E 2 Image generation from text

A high tech solarpunk utopia in the Amazon rainforest

Generate image

StableDiffusion Image generation from text


https://huggingface.co/spaces/stabilityai/stable-diffusion

I2DL: Prof. Niessner

			100 C
			000
			core de la corecte de la co
			a da ser da s
Control	Prompt	Resize input to 515x512	Step
	a girl holding an apple	Enable Safety Checker	50 0
Outpaint Export √ œ ℌ			Guidance
Outpaint Export √ œ Ω	li.	Strength 0.75	7.5

StableDiffusion Image Outpainting

Deep Learning Market

[...] market research report Deep Learning Market [...] " the deep learning market is expected to be worth **USD 415 Billion by 2030**.

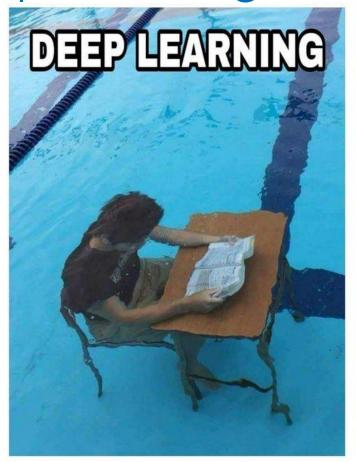
I2DL: Prof. Niessner

Deep Learning Job Perspective

- Excellent Job Perspectives!
 - Automation requires ML/DL -> growth!
 - Top-notch companies will gladly hire you!

- Many industries now:
 - IT-Companies
 - Cars, Logistics, Health Care, etc...
 - Manufacturing / Robotics, etc...

But: Also Challenging!


- High-level understanding is not enough
 - Need proper theory background
 - Need proper practical skillsets

- Can be competitive!
 - Many good people
 - Downloading scripts / running code not enough 😊
 - Deeper understanding often requires PhDs

Deep Learning on the Internet

Deep Learning Memes

I2DL: Prof. Niessner

Deep Learning Memes

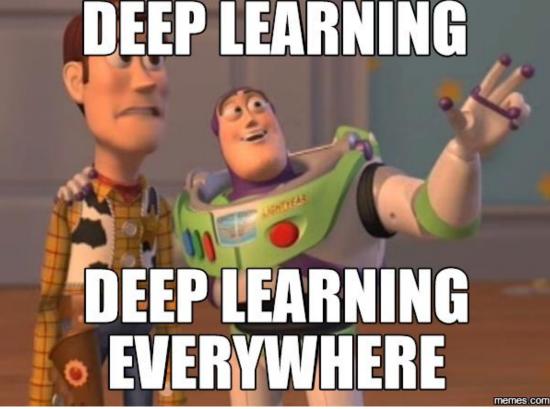
Deep Learning

What society thinks I do

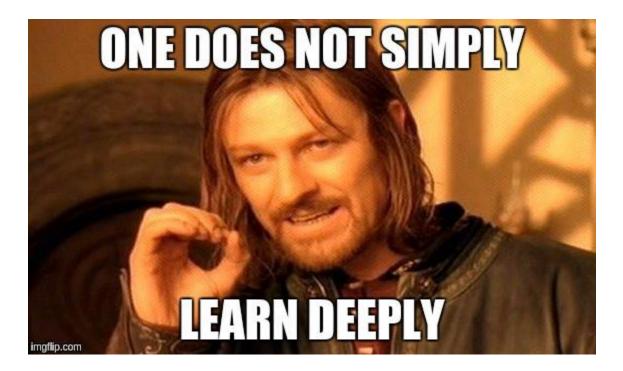
What my friends think I do

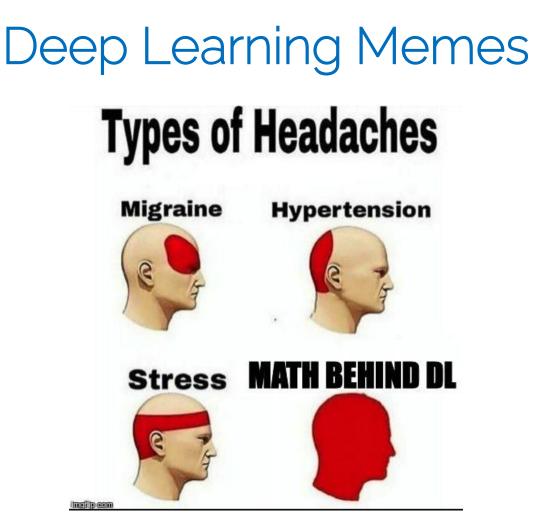
What other computer scientists think I do

What mathematicians think I do



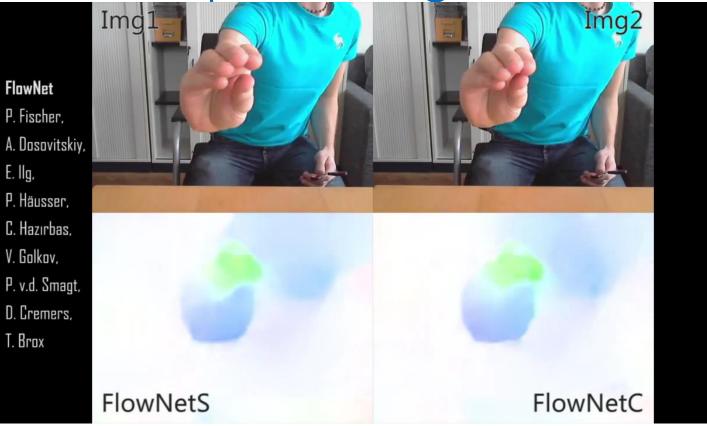
What I think I do


from theano import *

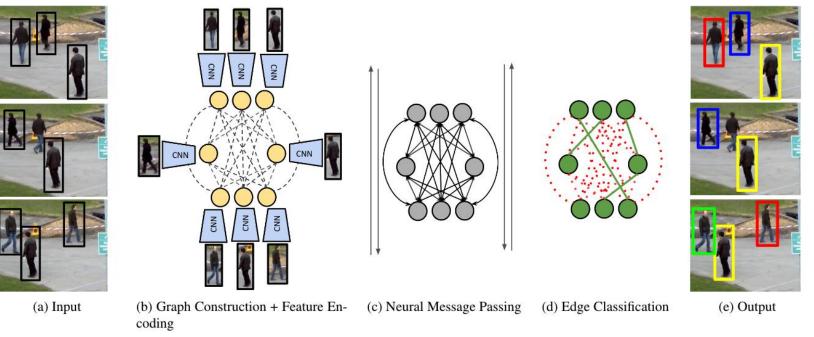

What I actually do

Deep Learning Memes

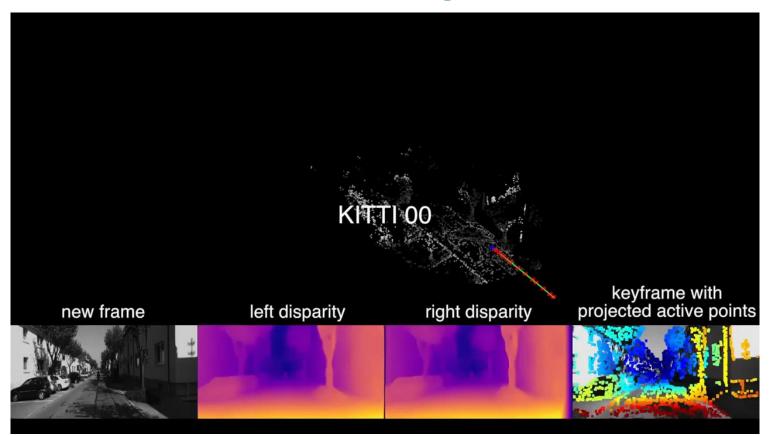
Many TUM Research Labs use DL


- Visual Computing Lab (Prof. Niessner):
 - Research in computer vision, graphics, and machine learning
- 3D AI Lab (Prof. Dai)
 - Research in 3D perception, 3D scene understanding
- Computer Vision Group (Prof. Cremers)
 - Research in computer vision and pattern recognition
- Data Mining and Analytics Lab (Prof. Günnemann)
 Research methods for robust machine learning
- Computer Aided Medical Procedures (Prof. Navab)
 - Research in machine learning for medical applications
- And many more 🕲

Our Research Lab


Visual Computing & Artificial Intelligence (Prof. Niessner):

- Website: <u>https://niessnerlab.org/publications.html</u>
- Twitter: <u>https://twitter.com/MattNiessner</u>
- Youtube: <u>https://www.youtube.com/channel/UCXN2nYjVTocR9G61RPEzK5Q</u>



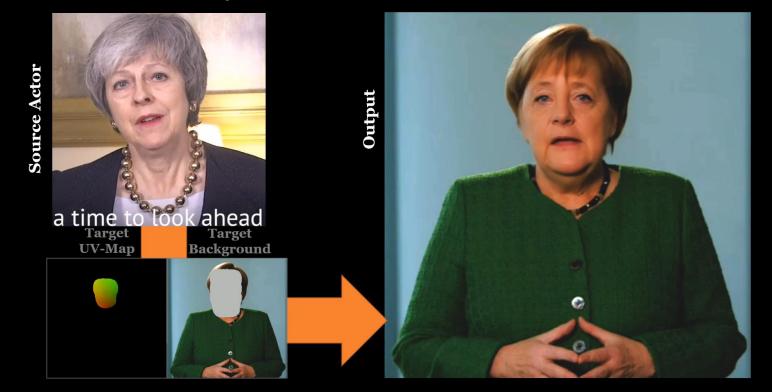
• Multiple object tracking with graph neural networks

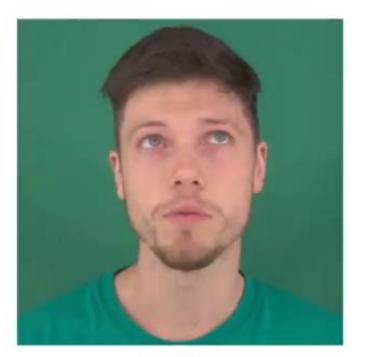
[Brasó and Leal-Taixé, CVPR 2020] Learning a Neural Solver for Multiple Object Tracking.

I2DL: Prof. Niessner

[Yang et al., ECCV' 18] Deep Virtual Stereo Odometry

Our method generates temporally coherent volumetric data with a trained CNN generator.


I2DL: Prof. Niessner


[Xie et al. Siggraph' 18] tempoGAN

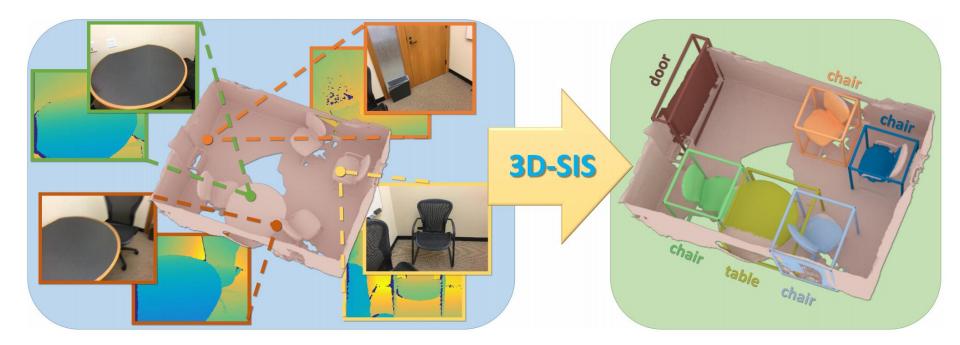
Animation Synthesis

Animation Synthesis

Input Video

4D Head Avatar

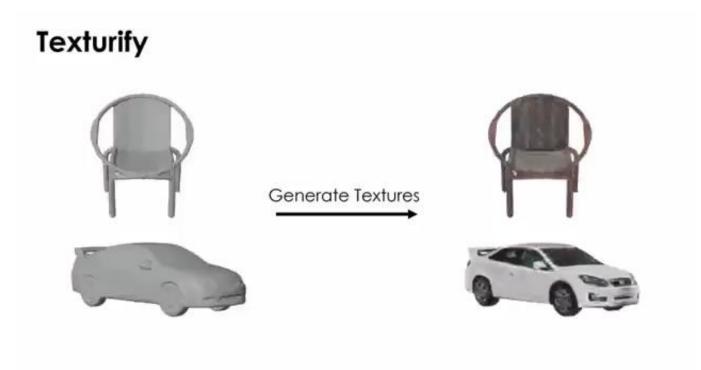
Only single-view training samples

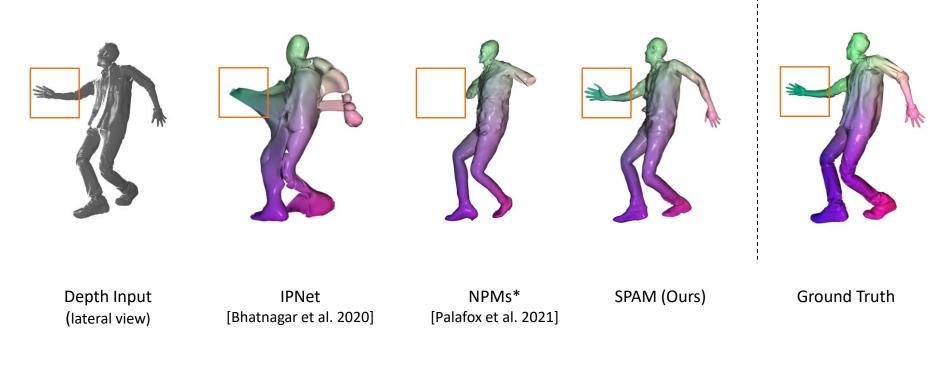


ScanNet Stats: -Kinect-style RGB-D sensors -1513 scans of 3D environments -2.5 Mio RGB-D frames -Dense 3D, crowd-source MTurk labels -Annotations projected to 2D frames

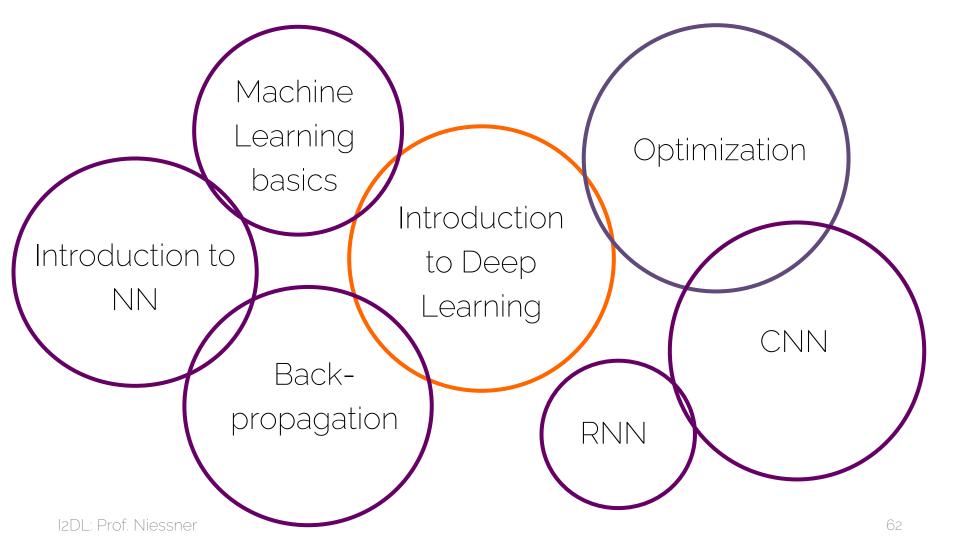
Learning 3D Using Language

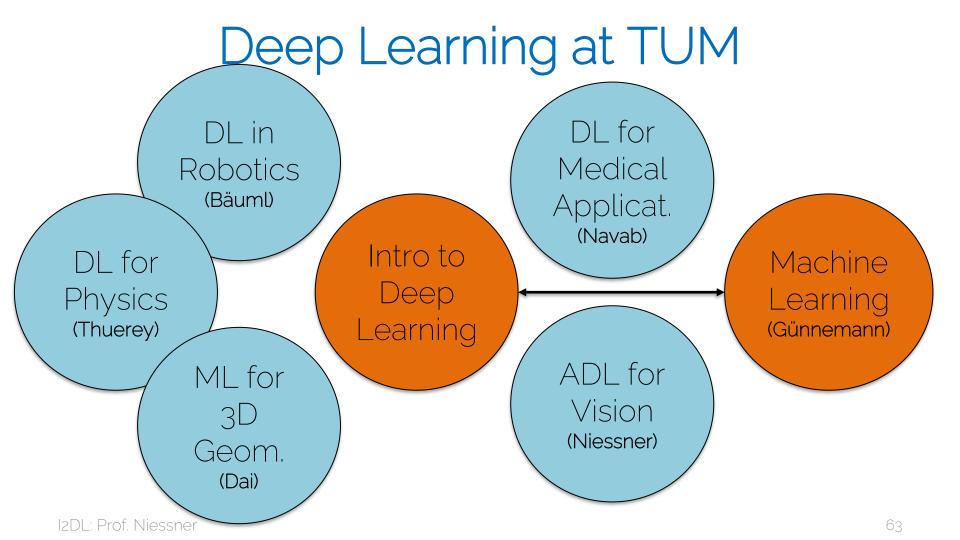
[Hou et al., CVPR'19] 3D Semantic Instance Segmentation


Input Scan



I2DL: Prof. Niessner





[Palafox et al., CVPR'22] SPAMs

Context of Other Lectures at TUM

Why is I2DL so Important?

- Many of the other lectures / practical require it!
 - Often only limited spots are available (e.g., in the Advanced Deep Learning for Computer Vision Class)

- Solid preparation for guided research / IDP
 - Most topics require it
 - For career in AI/DL these are the best ways to get into

Introduction to Deep Learning

Logistics

About the Lecture

- Theory lectures
- Lectures are online and will be released every Monday, 14:00 <u>https://niessner.github.io/I2DL/</u>

There are old recordings from 2 years, but everything will be re-recorded

Practical exercises (see later slides)

- Released every Thursday, 10:00
- Tutorial: Online videos (uploaded to live.rgb.tum.de)
- Programming exercises
- Guest lecture!

Preliminary Syllabus

Lecture 1: Introduction to the lecture, Deep Learning, Machine Learning. Lecture 2: Machine Learning Basics, Linear regression, Maximum Likelihood Lecture 3: Introduction to Neural Networks, Computational Graphs Lecture 4: Optimization and Backpropagation Lecture 5: Scaling Optimization to large Data, Stochastic Gradient Descent Lecture 6: Training Neural Networks I Lecture 7: Training Neural Networks II Lecture 8: Training Neural Networks III Lecture 9: Introduction to CNNs Lecture 10: CNNs architectures: Lecture 11: Recurrent Neural Networks (RNNs) Lecture 12: Advanced Deep Learning architectures Guest Lecture

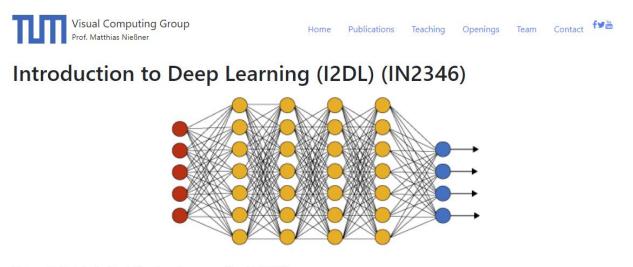
Moodle -> Piazza

- Announcements via Piazza IMPORTANT!
 - Sign up online for access: <u>http://piazza.com/tum.de</u>
 - Select "Summer 2023" term, search for IN2346
 - Use your @mytum.de email address
 - We will share common information (e.g., regarding exam)
- Forum
 - Ask and discuss questions
 - Tutors will monitor and answer questions
 - You are very welcome to actively participate
 - Please do not post solutions of the exercises
 - You can post private question visible only to the staff

• Email list:

i2dl@vc.in.tum.de

- Do NOT email us personally!
 Cannot handle so many emails / hence will be ignored
- Email list for organizational questions only!
 - Content questions -> Piazza or Office Hours
 - Or post the question/issue in a private thread on Piazza


(Virtual) Office Hours

We will have dedicated office hours regarding
 Theoretical help (e.g., specific lecture questions)
 Help on exercises

- More info in the first tutorial session
- Zoom links will be posted on Piazza

• Links and slides will be shared on website

Welcome to the Introduction to Deep Learning course offered in SoSe23.

https://niessner.github.io/l2DL/

Exam FAQ

- Final Exam: TBA
- Content: Lecture & exercises
- Important: No retake exam (I2DL is taught every semester)
- Grade Bonus:
 - Solve 8 out of 9 "non-optional" practical exercises
 - Bonus 0.3 on a **passed** final exam
 - Bonus is transferable from previous and future semesters

Other Administrative

- "External" students welcome (LMU, TUM PhD)
 - Fill out registration form and we will add you to the course
 - Will get Certificate / Schein at the end
- Again:
 - Check announcements on piazza
 - Check content on website: <u>https://niessner.github.io/l2DL/</u>

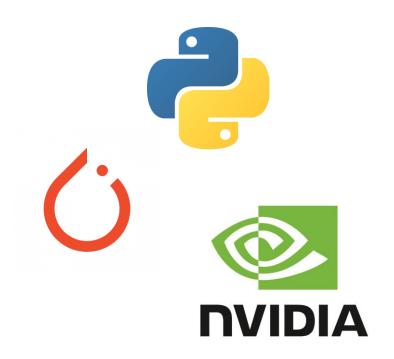
Practical Exercises

Exercise – Goal

- Hands-on programming experience (Learning by Doing)
- Reimplementations basic building blocks
- Introduction to common libraries
- (Get grade bonus)
- Ultimately: Gather enough experience to start your own individual (research) deep learning project

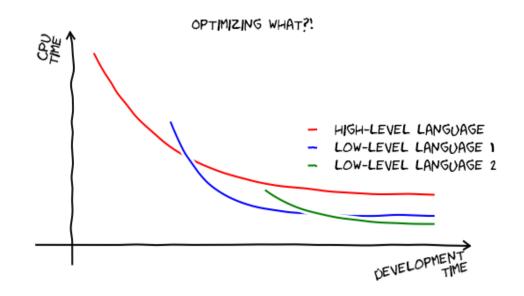
Exercise – Format

- Tutorial:
 - Video only Posted on live.rbg.tum.de Slides uploaded to piazza & website
 - Video length Exo2: Full lecture with written exercise Exo3-11: Short (~30min) video and coding exercises
- Programming: Interactive coding notebooks (~4h each)


Start time: Thursdays 10:00 * Working Time: 1 week Deadline: Wednesdays, 15:59

Except for exercise 1:

- No video ightarrow this lecture
- Starting time: Today
- Working time: 2 weeks


Exercises – Tech Stack

- Python Jupter notebooks Numpy
- Deep Learning library
 Pytorch
- Hardware requirements
 Minimum: CPU
 - Minimum, CPU
 - Preferred: Nvidia GPU
 - Alternative: Google Colab

Why Python?

- Very easy to write development code thanks to an intuitive syntax
- Biggest language used in deep learning research

Exercises – Content

Exercise 01: Organization Exercise 02: Math Recap	Intro			
Exercise 03: Dataset and Dataloader Exercise 04: Solver and Linear Regression Exercise 05: Neural Networks Exercise 06: Hyperparameter Tuning	Numpy (Reinvent the wheel)			
Exercise 07: Introduction to Pytorch Exercise 08: Autoencoder	Pytorch/Tensorboard			
Exercise 09: Convolutional Neural Networks Exercise 10: Semantic Segmentation Exercise 11: Recurrent Neural Networks	Applications (Hands-off)			

Exercises – 9 Submissions

* Exercise 01: Organization Exercise 02: Math Recap	Intro			
 * Exercise 03: Dataset and Dataloader * Exercise 04: Solver and Linear Regression * Exercise 05: Neural Networks * Exercise 06: Hyperparameter Tuning 	Numpy (Reinvent the wheel)			
Exercise 07: Introduction to Pytorch * Exercise 08: Autoencoder	Pytorch/Tensorboard			
* Exercise 09: Convolutional Neural Networks * Exercise 10: Semantic Segmentation * Exercise 11: Recurrent Neural Networks	Applications (Hands-off)			

Submission System

I2DL Home Course Page & Forum &	Login
Login	
L Username	
Password	
Login	
Register	
Matriculation Number	
Register	

1: Register with your enrolled Matriculation Number

2: Login with your credentials you get via email

https://i2dl.vc.in.tum.de/

Submission System

Exercise submission

Exercise 1 – Test the system	\sim
Exercise 3 – Dataset and Dataloader	\sim
Exercise 4 – Solver and Linear Regression	\sim
Exercise 5 – Neural Networks	\sim
Exercise 6 – Hyperparameter Tuning	\sim
Exercise 7 – Intro to Pytorch [Optional]	\sim
Exercise 8 – Autoencoder	\sim
Exercise 9 – Convolutional Neural Networks	\sim
Exercise 10 – Semantic Segmentation	\sim
Exercise 11 – Recurrent Neural Networks	\sim

xercise 1 – Test the sy	stem	/
Info		
• Description: Test	the system	
• Start: 2022-10-18	13:00:00	
• Deadline: 2022-1	1-02 15:59:59	
 Requirement: 60 		
 Max Score: 100.0 		
	in the working period you can submit solutions as often as you want	
	core counts for the bonus	
	The maximum evaluation time is 30min.	
	es it can still happen that your submission will get stuck in "queued". If your submission is there for more than 10min, please Jrry for the inconveniences.	1
submit again St	ny for the inconveniences.	
Upload		
Datei auswählen	Keine ausgewählt	
Upload		

Your previous submissions

#	Date	Status	Passed?	Score	Download
1	2022/10/16 18:12:07	finished	~	70.00	8
2	2022/10/16 17:50:57	finished	×	38.00	0
3	2022/10/14 19:10:05	cancelled	×	-	8

Within the working time you can submit as often as you want!

Submission System

Bonus

Exercise 1	Exercise 3	Exercise 4	Exercise 5	Exercise 6	Exercise 8	Exercise 9	Exercise 10	Exercise 11
~	~	~	~	~	~	×	~	~
(70.00)	(90.00)	(100.00)	(100.00)	(52.02)	(78.00)	0	(64.17)	(84.38)

This table gives an overview over your current status regarding the grade bonus.

For each exercise only the best submission is displayed.

To be eligible for the grade bonus of 0.3 (on an already passed exam), you need to pass 8 of the 9 non-optional submissions.

Leaderboard

	The leaderboard shows for each exercise the highest scoring submission from each user. Only valid submissions are displayed.					
2 Exercise 1	Exercise 3 Exercise 4	Exercise 5 Exercise 6	Exercise 8 Exercise 9	Exercise 10	Exercise 11	
#	User		Score			
1	a0001		90.00			
2	a0006		90.00			
3	a0007		90.00			

Grade Bonus

- Solve **8 out of 9** submissions (bold ones)
 - Pass the required score

- Grade bonus:
 - 0.3 improvement on **passed** exam
 - Can be transferred from previous and future semesters

* Exercise 01: Organization Exercise 02: Math Recap

- * Exercise 03: Dataset and Dataloader
- * Exercise 04: Solver and Linear Regression
- * Exercise 05: Neural Networks
- * Exercise 06: Hyperparameter Tuning

Exercise 07: Introduction to Pytorch * Exercise 08: Autoencoder

* Exercise 09: Convolutional Neural Networks

- * Exercise 10: Semantic Segmentation
- * Exercise 11: Recurrent Neural Networks

Exercise 01 – Overview

- Starting time: Today, after the lecture (16:00)
- Deadline: Wednesday 05/03, 15:59 (in 2 weeks)
- Content
 - Get familiar with the exercise structure
 - Jupyter Notebook & Python setup (local / Google Colab)
 - Introduction to the submission system
 - Submission:
 - Implement 1 line of code

Upcoming Lecture

• Next Lecture: Lecture 2: Machine Learning basics

• From today: Start of exercise 1

See you next time 🕲